在这篇首次博客文章中,我想简单地介绍一下这样的想法:在热分析方面,您的日常电子表格工具可以用来做一些非常棒的事情。
在接下来的几个月中,在更多博客和可能创建一些简短(比如15-20分钟)的视频教程之间,我的目标是展示一些相当惊人的可能性,向您展示我学到的许多技巧。
多年用MicrosoftExcel®构建各种热模型。
只是为了满足您的胃口,您可以使用基本但功能强大的内置功能,如数组公式,矩阵函数,命名变量和求解器,来做一些事情,包括将热RC网络拟合到实验数据,调整热RC
模型匹配表面加热或体积加热的半导体器件,使用这些模型分析多脉冲和其他复杂的功率循环温度预测,创建单热源系统和多热源系统的节点元件热模型等
。
您可能会问,为什么我会使用低电子表格来处理所有这些分析内容?
是否有其他工具可以做得更好?
事实上,至少从某个角度来看。
例如,在ON,我们使用通用有限元工具(如ANSYS®)来进行非常复杂和详细的热模拟。
我们甚至拥有一台名副其实的超级计算机,我们将其用于一些最大的热和机械有限元仿真工作。
我们不时使用专用电子系统导向的热代码(Icepak®和Flotherm®,仅举几个例子),它们可以进行计算流体流动分析,这些东西甚至无法被某些东西所触及。
Excel中的“低技术”。
我亲自使用labview®进行了大量的热分析,它可以围绕Excel运行圆圈,以实现绝对的计算速度。
但总之,这些工具的问题是成本问题。
通常情况下,如果不花费至少1万美元就无法进入游戏,而高端工具每个用户的价格可能高达6万美元。
当然,ON的一些大客户可能可以访问这些功能,但不是全部。
相比之下,几乎每个人都有Excel。
鉴于Excel实际可以实现的目标,如果您知道自己在做什么,那么它就值得学习如何努力。
这是我的目标,最大化您的Excel热学诀窍!
敬请关注!
你友好的热力大师,
罗杰斯托特
以上来自于谷歌翻译
以下为原文
In this inaugural blog entry, I'd like simply to introduce the idea that your everyday spreadsheet tool can be used to do some pretty amazing things when it comes to thermal analysis. Over the course of the next few months, between more blogging and possibly the creation of some short (say 15-20 minute long) video tutorials, my goal is to demonstrate some fairly amazing possibilities, showing you many tricks I've learned over the years in building thermal models of various sorts with Microsoft Excel®.
Just to whet your appetite, you can use basic, but powerful, built-in features such as array formulas, matrix functions, named variables, and the Solver, to do things including fitting thermal-RC networks to experimental data, adjusting thermal-RC models to match either surface-heated or bulk-heated semiconductor devices, using these models to analyze multiple-pulse and otherwise complicated power-cycling temperature predictions, creating node-element thermal models of single- and multiple-heat-source systems, and more.
Why, you may ask, would I be so big on using a lowly spreadsheet for all this analytical stuff? Aren't there other tools that could do a much better job? Indeed there are, at least, from a certain perspective. For instance, at ON, we use general-purpose finite element tools such as ANSYS® to do very complex and detailed thermal simulations. We even have a veritable supercomputer that we use for some of our largest thermal and mechanical finite-element simulation jobs. From time to time, we've used special-purpose electronics-system-oriented thermal codes (Icepak® and Flotherm®, to name a couple) that can perform computational fluid flow analysis, things that can't even be touched by something as "low tech" as Excel. I've personally done a lot of thermal analysis using LabVIEW®, which can run circles around Excel for sheer computational speed. In a word, however, the problem with these tools is cost. Typically you can't even get into the game without spending at least $10K, and high-end tools may run as much as $60K per user. Sure, some of ON's larger customers may have access to these capabilities, but not all. In contrast, nearly everyone has Excel.
Given what can actually be done with Excel, if you know what you're doing, it therefore makes it well worth the effort to learn how. That's my goal, to maximize your Excel thermal know-how! Stay tuned!
Your friendly thermal guru,
Roger Stout
|