发 帖  
  • 在电子工程领域,功率器件和集成电路是两个重要的分支,它们各自在特定的应用场景中发挥着重要的作用。关于两者间的定义常会引起混淆,接下来就让小编来带您梳理一下功率器件与集成电路的同与不同。...
    0
    1220次阅读
    0条评论
  • 功率半导体通过对电流与电压进行调控实现电能在系统中的形式转换与传输分配,能够实现电能转换和电路控制,在电路中主要起着功率转换、功率放大、功率开关、线路保护、逆变(直流转交流)和整流(交流转直流)等作用。...
    0
    670次阅读
    0条评论
  • 碳化硅 ( SiC )具有禁带宽、临界击穿场强大、热导率高、高压、高温、高频等优点。应用于硅基器件的传统封装方式寄生电感参数较大,难以匹配 SiC 器件的快速开关特性,同时在高温工况下封装可靠性大幅降低,为充分发挥 Si...
    0
    2067次阅读
    0条评论
  • 众所周知,IGBT失效是IGBT应用中的难题。大功率IGBT作为系统中主电路部分的开关器件,失效后将直接导致系统瘫痪。宇宙射线作为一个无法预知的因素,可能就是导致IGBT发生意外故障的关键。...
    0
    1946次阅读
    0条评论
  • IBM 的概念纳米片晶体管在氮沸点下表现出近乎两倍的性能提升。这一成就预计将带来多项技术进步,并可能为纳米片晶体管取代 FinFET 铺平道路。更令人兴奋的是,它可能会导致更强大的芯片类别的开发。...
    0
    598次阅读
    0条评论
  • 统的硅功率器件工艺中,高温扩散和离子注入是最主要的掺杂控制方法,两者各有优缺点。一般来说,高温扩散工艺简单,设备便宜,掺杂分布轮廓为等向性,且高温扩散工艺引入的晶格损伤低。离子注入工艺复杂且设备昂贵,但它可独立控制掺杂元...
    0
    2802次阅读
    0条评论
  • 本文汇集了 SiC MOSFET 最新结果的特定方面,涉及由于应用交流栅极偏置应力(也称为栅极开关应力)导致的阈值电压 (VT) 退化及其影响沟槽几何器件对负偏压过应力 (NBO) 效应的强烈依赖。交流栅极偏置应力引起的...
    0
    841次阅读
    0条评论
  • Chiplet,困难重重

    2023-12-20 16:23
    到目前为止,第三方chiplet的使用情况参差不齐。普遍的共识是,第三方芯粒市场将在某个时候蓬勃发展,部分原因是购买芯粒比构建它们更便宜,前提是有足够的互操作性标准。...
    0
    607次阅读
    0条评论
  • 碳化硅(SiC)材料被认为已经彻底改变了电力电子行业。其宽带隙、高温稳定性和高导热性等特性将为SiC基功率器件带来一系列优势。近年来,随着新能源汽车企业将SiC基MOSFET模块应用于高端汽车,SiC衬底材料的应用前景再...
    0
    2198次阅读
    0条评论
  • 英特尔是三者中最早演示 CFET 的,早在 2020 年就在 IEDM 上推出了早期版本。这一次,英特尔报告了围绕 CFET 制造的最简单电路(inverter)的多项改进。CMOS inverter 将相同的输入电压发...
    0
    516次阅读
    0条评论
  • 更高的击穿场允许器件在给定区域承受更高的电压。这使得器件设计人员能够在相同的芯片尺寸下增加用于电流流动的面积,从而降低给定面积的器件电阻 (R sp )。该器件的电阻与传导功率损耗直接相关,因此较小的 R sp将导致更低...
    0
    1087次阅读
    0条评论
  • MOSFET的并联使用

    2023-12-19 09:40
    MOSFET的并联使用...
    0
    1165次阅读
    0条评论
  • IGBT:IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSF...
    0
    8300次阅读
    0条评论
  • 与传统半导体材料硅、锗相比,第三代半导体材料碳化硅 (Silicon Carbide, SiC) 具有禁带宽度大、击穿电压高、热导率高、高温稳定性好以及电子饱和漂移速度高等优势,满足抗辐射、耐高压、耐高温、高频及大功率等...
    0
    2313次阅读
    0条评论
  • 碳化硅衬底有诸多缺陷无法直接加工,需要在其上经过外延工艺生长出特定单晶薄膜才能制作芯片晶圆,这层薄膜便是外延层。几乎所有的碳化硅器件均在外延材料上实现,高质量的碳化硅同质外延材料是碳化硅器件研制的基础,外延材料的性能直接...
    0
    2924次阅读
    0条评论
ta 的专栏

成就与认可

  • 获得 10 次赞同

    获得 0 次收藏
关闭

站长推荐 上一条 /6 下一条

返回顶部