至此串口显示搞定了
然后是24l01的程序代码
先是H文件:
#ifndef __24L01_H
#define __24L01_H
#include “15f204ea.h”
#define u8 unsigned char
#define u16 unsigned int
typedef unsigned char uchar;
typedef unsigned char uint;
/*nRF24L01引脚定义*/
***it CE = P1^4;
***it CSN = P1^5;
***it SCK = P1^2;
***it MOSI = P1^3;
***it MISO = P1^0;
***it IRQ = P1^1;
//NRF24L01寄存器操作命令
#define READ_NRF_REG 0x00 //读配置寄存器,低5位为寄存器地址
#define WRITE_NRF_REG 0x20 //写配置寄存器,低5位为寄存器地址
#define RD_RX_PLOAD 0x61 //读RX有效数据,1~32字节
#define WR_TX_PLOAD 0xA0 //写TX有效数据,1~32字节
#define FLUSH_TX 0xE1 //清除TX FIFO寄存器。发射模式下用
#define FLUSH_RX 0xE2 //清除RX FIFO寄存器。接收模式下用
#define REUSE_TX_PL 0xE3 //重新使用上一包数据,CE为高,数据包被不断发送。
#define NOP 0xFF //空操作,可以用来读状态寄存器
//SPI(NRF24L01)寄存器地址
#define CONFIG 0x00 //配置寄存器地址;bit0:1接收模式,0发射模式;bit1:电选择;bit2:CRC模式;bit3:CRC使能;
//bit4:中断MAX_RT(达到最大重发次数中断)使能;bit5:中断TX_DS使能;bit6:中断RX_DR使能
#define EN_AA 0x01 //使能自动应答功能 bit0~5,对应通道0~5
#define EN_RXADDR 0x02 //接收地址允许,bit0~5,对应通道0~5
#define SETUP_AW 0x03 //设置地址宽度(所有数据通道):bit1,0:00,3字节;01,4字节;02,5字节;
#define SETUP_RETR 0x04 //建立自动重发;bit3:0,自动重发计数器;bit7:4,自动重发延时 250*x+86us
#define RF_CH 0x05 //RF通道,bit6:0,工作通道频率;
#define RF_SETUP 0x06 //RF寄存器;bit3:传输速率(0:1Mbps,1:2Mbps);bit2:1,发射功率;bit0:低噪声放大器增益
#define STATUS 0x07 //状态寄存器;bit0:TX FIFO满标志;bit3:1,接收数据通道号(最大:6);bit4,达到最多次重发
//bit5:数据发送完成中断;bit6:接收数据中断;
#define MAX_TX 0x10 //达到最大发送次数中断
#define TX_OK 0x20 //TX发送完成中断
#define RX_OK 0x40 //接收到数据中断
#define OBSERVE_TX 0x08 //发送检测寄存器,bit7:4,数据包丢失计数器;bit3:0,重发计数器
#define CD 0x09 //载波检测寄存器,bit0,载波检测;
#define RX_ADDR_P0 0x0A //数据通道0接收地址,最大长度5个字节,低字节在前
#define RX_ADDR_P1 0x0B //数据通道1接收地址,最大长度5个字节,低字节在前
#define RX_ADDR_P2 0x0C //数据通道2接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P3 0x0D //数据通道3接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P4 0x0E //数据通道4接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P5 0x0F //数据通道5接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define TX_ADDR 0x10 //发送地址(低字节在前),ShockBurstTM模式下,RX_ADDR_P0与此地址相等
#define RX_PW_P0 0x11 //接收数据通道0有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P1 0x12 //接收数据通道1有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P2 0x13 //接收数据通道2有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P3 0x14 //接收数据通道3有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P4 0x15 //接收数据通道4有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P5 0x16 //接收数据通道5有效数据宽度(1~32字节),设置为0则非法
#define FIFO_STATUS 0x17 //FIFO状态寄存器;bit0,RX FIFO寄存器空标志;bit1,RX FIFO满标志;bit2,3,保留
//bit4,TX FIFO空标志;bit5,TX FIFO满标志;bit6,1,循环发送上一数据包.0,不循环;
//
//24L01操作线
#define NRF24L01_CE CE //24L01片选信号
#define NRF24L01_CSN CSN //SPI片选信号
#define NRF24L01_IRQ IRQ //IRQ主机数据输入
//24L01发送接收数据宽度定义
#define TX_ADR_WIDTH 5 //5字节的地址宽度
#define RX_ADR_WIDTH 5 //5字节的地址宽度
#define TX_PLOAD_WIDTH 32 //20字节的用户数据宽度
#define RX_PLOAD_WIDTH 32 //20字节的用户数据宽度
void NRF24L01_Init(void);//初始化
void RX_Mode(void);//配置为接收模式
void TX_Mode(void);//配置为发送模式
u8 NRF24L01_Check(void);//检查24L01是否存在
u8 NRF24L01_TxPacket(u8 *txbuf);//发送一个包的数据
u8 NRF24L01_RxPacket(u8 *rxbuf);//接收一个包的数据
#endif
其中管脚是我自己的管脚,可以根据需要更改为你的管脚
然后是C文件
#include “15f204ea.h”
#include “24l01.h”
#include “intrins.h”
const u8 TX_ADDRESS[TX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x03}; //发送地址
const u8 RX_ADDRESS[RX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x03}; //发送地址
/******************************************************************************************
/*延时函数
/******************************************************************************************/
void inerDelay_us(unsigned char n)
{
for(;n》0;n--)
_nop_();
}
//****************************************************************************************
/*NRF24L01初始化
//***************************************************************************************/
void NRF24L01_Init(void)
{
inerDelay_us(100);
CE=0; // chip enable
CSN=1; // Spi disable
SCK=0; //
}
/****************************************************************************************************
/*函数:uint SPI_RW(uint uchar)
/*功能:NRF24L01的SPI写时序
/****************************************************************************************************/
uint SPI_RW(uint uchar)
{
uint bit_ctr;
for(bit_ctr=0;bit_ctr《8;bit_ctr++) // output 8-bit
{
MOSI = (uchar & 0x80); // output ‘uchar’, MSB to MOSI
uchar = (uchar 《《 1); // shift next bit into MSB.。
SCK = 1; // Set SCK high.。
uchar |= MISO; // capture current MISO bit
SCK = 0; // 。.then set SCK low again
}
return(uchar); // return read uchar
}
/****************************************************************************************************
/*函数:uchar SPI_Read(uchar reg)
/*功能:NRF24L01的SPI时序
/****************************************************************************************************/
uchar NRF24L01_Read_Reg(uchar reg)
{
uchar reg_val;
CSN = 0; // CSN low, initialize SPI communication.。.
SPI_RW(reg); // Select register to read from.。
reg_val = SPI_RW(0); // 。.then read registervalue
CSN = 1; // CSN high, terminate SPI communication
return(reg_val); // return register value
}
/****************************************************************************************************/
/*功能:NRF24L01读写寄存器函数
/****************************************************************************************************/
uint NRF24L01_Write_Reg(uchar reg, uchar value)
{
uint status;
CSN = 0; // CSN low, init SPI transaction
status = SPI_RW(reg); // select register
SPI_RW(value); // 。.and write value to it.。
CSN = 1; // CSN high again
return(status); // return nRF24L01 status uchar
}
/****************************************************************************************************/
/*函数:uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
/*功能: 用于读数据,reg:为寄存器地址,pBuf:为待读出数据地址,uchars:读出数据的个数
/****************************************************************************************************/
uint NRF24L01_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
{
uint status,uchar_ctr;
CSN = 0; // Set CSN low, init SPI tranaction
status = SPI_RW(reg); // Select register to write to and read status uchar
for(uchar_ctr=0;uchar_ctr《uchars;uchar_ctr++)
pBuf[uchar_ctr] = SPI_RW(0); //
CSN = 1;
return(status); // return nRF24L01 status uchar
}
/*********************************************************************************************************
/*函数:uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)
/*功能: 用于写数据:为寄存器地址,pBuf:为待写入数据地址,uchars:写入数据的个数
/*********************************************************************************************************/
uint NRF24L01_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)
{
uint status,uchar_ctr;
CSN = 0; //SPI使能
status = SPI_RW(reg);
for(uchar_ctr=0; uchar_ctr《uchars; uchar_ctr++) //
SPI_RW(*pBuf++);
CSN = 1; //关闭SPI
return(status); //
}
//检测24L01是否存在
//返回值:0,成功;1,失败
u8 NRF24L01_Check(void)
{
u8 buf[5]={0XA5,0XA5,0XA5,0XA5,0XA5};
u8 i;
NRF24L01_Write_Buf(WRITE_NRF_REG+TX_ADDR,buf,5);//写入5个字节的地址。
NRF24L01_Read_Buf(TX_ADDR,buf,5); //读出写入的地址
for(i=0;i《5;i++) if(buf[i]!=0XA5)break;
if(i!=5)return 1;//检测24L01错误
return 0; //检测到24L01
}
u8 NRF24L01_TxPacket(u8 *txbuf)
{
u8 sta;
NRF24L01_CE=0;
NRF24L01_Write_Buf(WR_TX_PLOAD,txbuf,TX_PLOAD_WIDTH);//写数据到TX BUF 32个字节
NRF24L01_CE=1;//启动发送
while(NRF24L01_IRQ!=0);//等待发送完成
sta=NRF24L01_Read_Reg(STATUS); //读取状态寄存器的值
NRF24L01_Write_Reg(WRITE_NRF_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
if(sta&MAX_TX)//达到最大重发次数
{
NRF24L01_Write_Reg(FLUSH_TX,0xff);//清除TX FIFO寄存器
return MAX_TX;
}
if(sta&TX_OK)//发送完成
{
return TX_OK;
}
return 0xff;//其他原因发送失败
}
//启动NRF24L01发送一次数据
//txbuf:待发送数据首地址
//返回值:0,接收完成;其他,错误代码
u8 NRF24L01_RxPacket(u8 *rxbuf)
{
u8 sta;
sta=NRF24L01_Read_Reg(STATUS); //读取状态寄存器的值
NRF24L01_Write_Reg(WRITE_NRF_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
if(sta&RX_OK)//接收到数据
{
NRF24L01_Read_Buf(RD_RX_PLOAD,rxbuf,RX_PLOAD_WIDTH);//读取数据
NRF24L01_Write_Reg(FLUSH_RX,0xff);//清除RX FIFO寄存器
return 0;
}
return 1;//没收到任何数据
}
//该函数初始化NRF24L01到RX模式
//设置RX地址,写RX数据宽度,选择RF频道,波特率和LNA HCURR
//当CE变高后,即进入RX模式,并可以接收数据了
void RX_Mode(void)
{
NRF24L01_CE=0;
NRF24L01_Write_Buf(WRITE_NRF_REG+RX_ADDR_P0,(u8*)RX_ADDRESS,RX_ADR_WIDTH);//写RX节点地址
NRF24L01_Write_Reg(WRITE_NRF_REG+EN_AA,0x01); //使能通道0的自动应答
NRF24L01_Write_Reg(WRITE_NRF_REG+EN_RXADDR,0x01);//使能通道0的接收地址
NRF24L01_Write_Reg(WRITE_NRF_REG+RF_CH,40); //设置RF通信频率
NRF24L01_Write_Reg(WRITE_NRF_REG+RX_PW_P0,RX_PLOAD_WIDTH);//选择通道0的有效数据宽度
NRF24L01_Write_Reg(WRITE_NRF_REG+RF_SETUP,0x0f);//设置TX发射参数,0db增益,2Mbps,低噪声增益开启
NRF24L01_Write_Reg(WRITE_NRF_REG+CONFIG, 0x0f);//配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC,接收模式
NRF24L01_CE = 1; //CE为高,进入接收模式
}
//该函数初始化NRF24L01到TX模式
//设置TX地址,写TX数据宽度,设置RX自动应答的地址,填充TX发送数据,选择RF频道,波特率和LNA HCURR
//PWR_UP,CRC使能
//当CE变高后,即进入RX模式,并可以接收数据了
//CE为高大于10us,则启动发送。
void TX_Mode(void)
{
NRF24L01_CE=0;
NRF24L01_Write_Buf(WRITE_NRF_REG+TX_ADDR,(u8*)TX_ADDRESS,TX_ADR_WIDTH);//写TX节点地址
NRF24L01_Write_Buf(WRITE_NRF_REG+RX_ADDR_P0,(u8*)RX_ADDRESS,RX_ADR_WIDTH); //设置TX节点地址,主要为了使能ACK
NRF24L01_Write_Reg(WRITE_NRF_REG+EN_AA,0x01); //使能通道0的自动应答
NRF24L01_Write_Reg(WRITE_NRF_REG+EN_RXADDR,0x01); //使能通道0的接收地址
NRF24L01_Write_Reg(WRITE_NRF_REG+SETUP_RETR,0x1a);//设置自动重发间隔时间:500us + 86us;最大自动重发次数:10次
NRF24L01_Write_Reg(WRITE_NRF_REG+RF_CH,40); //设置RF通道为40
NRF24L01_Write_Reg(WRITE_NRF_REG+RF_SETUP,0x0f); //设置TX发射参数,0db增益,2Mbps,低噪声增益开启
NRF24L01_Write_Reg(WRITE_NRF_REG+CONFIG,0x0e); //配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC,接收模式,开启所有中断
NRF24L01_CE=1;//CE为高,10us后启动发送
inerDelay_us(20);
}
至此串口显示搞定了
然后是24l01的程序代码
先是H文件:
#ifndef __24L01_H
#define __24L01_H
#include “15f204ea.h”
#define u8 unsigned char
#define u16 unsigned int
typedef unsigned char uchar;
typedef unsigned char uint;
/*nRF24L01引脚定义*/
***it CE = P1^4;
***it CSN = P1^5;
***it SCK = P1^2;
***it MOSI = P1^3;
***it MISO = P1^0;
***it IRQ = P1^1;
//NRF24L01寄存器操作命令
#define READ_NRF_REG 0x00 //读配置寄存器,低5位为寄存器地址
#define WRITE_NRF_REG 0x20 //写配置寄存器,低5位为寄存器地址
#define RD_RX_PLOAD 0x61 //读RX有效数据,1~32字节
#define WR_TX_PLOAD 0xA0 //写TX有效数据,1~32字节
#define FLUSH_TX 0xE1 //清除TX FIFO寄存器。发射模式下用
#define FLUSH_RX 0xE2 //清除RX FIFO寄存器。接收模式下用
#define REUSE_TX_PL 0xE3 //重新使用上一包数据,CE为高,数据包被不断发送。
#define NOP 0xFF //空操作,可以用来读状态寄存器
//SPI(NRF24L01)寄存器地址
#define CONFIG 0x00 //配置寄存器地址;bit0:1接收模式,0发射模式;bit1:电选择;bit2:CRC模式;bit3:CRC使能;
//bit4:中断MAX_RT(达到最大重发次数中断)使能;bit5:中断TX_DS使能;bit6:中断RX_DR使能
#define EN_AA 0x01 //使能自动应答功能 bit0~5,对应通道0~5
#define EN_RXADDR 0x02 //接收地址允许,bit0~5,对应通道0~5
#define SETUP_AW 0x03 //设置地址宽度(所有数据通道):bit1,0:00,3字节;01,4字节;02,5字节;
#define SETUP_RETR 0x04 //建立自动重发;bit3:0,自动重发计数器;bit7:4,自动重发延时 250*x+86us
#define RF_CH 0x05 //RF通道,bit6:0,工作通道频率;
#define RF_SETUP 0x06 //RF寄存器;bit3:传输速率(0:1Mbps,1:2Mbps);bit2:1,发射功率;bit0:低噪声放大器增益
#define STATUS 0x07 //状态寄存器;bit0:TX FIFO满标志;bit3:1,接收数据通道号(最大:6);bit4,达到最多次重发
//bit5:数据发送完成中断;bit6:接收数据中断;
#define MAX_TX 0x10 //达到最大发送次数中断
#define TX_OK 0x20 //TX发送完成中断
#define RX_OK 0x40 //接收到数据中断
#define OBSERVE_TX 0x08 //发送检测寄存器,bit7:4,数据包丢失计数器;bit3:0,重发计数器
#define CD 0x09 //载波检测寄存器,bit0,载波检测;
#define RX_ADDR_P0 0x0A //数据通道0接收地址,最大长度5个字节,低字节在前
#define RX_ADDR_P1 0x0B //数据通道1接收地址,最大长度5个字节,低字节在前
#define RX_ADDR_P2 0x0C //数据通道2接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P3 0x0D //数据通道3接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P4 0x0E //数据通道4接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define RX_ADDR_P5 0x0F //数据通道5接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define TX_ADDR 0x10 //发送地址(低字节在前),ShockBurstTM模式下,RX_ADDR_P0与此地址相等
#define RX_PW_P0 0x11 //接收数据通道0有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P1 0x12 //接收数据通道1有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P2 0x13 //接收数据通道2有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P3 0x14 //接收数据通道3有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P4 0x15 //接收数据通道4有效数据宽度(1~32字节),设置为0则非法
#define RX_PW_P5 0x16 //接收数据通道5有效数据宽度(1~32字节),设置为0则非法
#define FIFO_STATUS 0x17 //FIFO状态寄存器;bit0,RX FIFO寄存器空标志;bit1,RX FIFO满标志;bit2,3,保留
//bit4,TX FIFO空标志;bit5,TX FIFO满标志;bit6,1,循环发送上一数据包.0,不循环;
//
//24L01操作线
#define NRF24L01_CE CE //24L01片选信号
#define NRF24L01_CSN CSN //SPI片选信号
#define NRF24L01_IRQ IRQ //IRQ主机数据输入
//24L01发送接收数据宽度定义
#define TX_ADR_WIDTH 5 //5字节的地址宽度
#define RX_ADR_WIDTH 5 //5字节的地址宽度
#define TX_PLOAD_WIDTH 32 //20字节的用户数据宽度
#define RX_PLOAD_WIDTH 32 //20字节的用户数据宽度
void NRF24L01_Init(void);//初始化
void RX_Mode(void);//配置为接收模式
void TX_Mode(void);//配置为发送模式
u8 NRF24L01_Check(void);//检查24L01是否存在
u8 NRF24L01_TxPacket(u8 *txbuf);//发送一个包的数据
u8 NRF24L01_RxPacket(u8 *rxbuf);//接收一个包的数据
#endif
其中管脚是我自己的管脚,可以根据需要更改为你的管脚
然后是C文件
#include “15f204ea.h”
#include “24l01.h”
#include “intrins.h”
const u8 TX_ADDRESS[TX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x03}; //发送地址
const u8 RX_ADDRESS[RX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x03}; //发送地址
/******************************************************************************************
/*延时函数
/******************************************************************************************/
void inerDelay_us(unsigned char n)
{
for(;n》0;n--)
_nop_();
}
//****************************************************************************************
/*NRF24L01初始化
//***************************************************************************************/
void NRF24L01_Init(void)
{
inerDelay_us(100);
CE=0; // chip enable
CSN=1; // Spi disable
SCK=0; //
}
/****************************************************************************************************
/*函数:uint SPI_RW(uint uchar)
/*功能:NRF24L01的SPI写时序
/****************************************************************************************************/
uint SPI_RW(uint uchar)
{
uint bit_ctr;
for(bit_ctr=0;bit_ctr《8;bit_ctr++) // output 8-bit
{
MOSI = (uchar & 0x80); // output ‘uchar’, MSB to MOSI
uchar = (uchar 《《 1); // shift next bit into MSB.。
SCK = 1; // Set SCK high.。
uchar |= MISO; // capture current MISO bit
SCK = 0; // 。.then set SCK low again
}
return(uchar); // return read uchar
}
/****************************************************************************************************
/*函数:uchar SPI_Read(uchar reg)
/*功能:NRF24L01的SPI时序
/****************************************************************************************************/
uchar NRF24L01_Read_Reg(uchar reg)
{
uchar reg_val;
CSN = 0; // CSN low, initialize SPI communication.。.
SPI_RW(reg); // Select register to read from.。
reg_val = SPI_RW(0); // 。.then read registervalue
CSN = 1; // CSN high, terminate SPI communication
return(reg_val); // return register value
}
/****************************************************************************************************/
/*功能:NRF24L01读写寄存器函数
/****************************************************************************************************/
uint NRF24L01_Write_Reg(uchar reg, uchar value)
{
uint status;
CSN = 0; // CSN low, init SPI transaction
status = SPI_RW(reg); // select register
SPI_RW(value); // 。.and write value to it.。
CSN = 1; // CSN high again
return(status); // return nRF24L01 status uchar
}
/****************************************************************************************************/
/*函数:uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
/*功能: 用于读数据,reg:为寄存器地址,pBuf:为待读出数据地址,uchars:读出数据的个数
/****************************************************************************************************/
uint NRF24L01_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
{
uint status,uchar_ctr;
CSN = 0; // Set CSN low, init SPI tranaction
status = SPI_RW(reg); // Select register to write to and read status uchar
for(uchar_ctr=0;uchar_ctr《uchars;uchar_ctr++)
pBuf[uchar_ctr] = SPI_RW(0); //
CSN = 1;
return(status); // return nRF24L01 status uchar
}
/*********************************************************************************************************
/*函数:uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)
/*功能: 用于写数据:为寄存器地址,pBuf:为待写入数据地址,uchars:写入数据的个数
/*********************************************************************************************************/
uint NRF24L01_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)
{
uint status,uchar_ctr;
CSN = 0; //SPI使能
status = SPI_RW(reg);
for(uchar_ctr=0; uchar_ctr《uchars; uchar_ctr++) //
SPI_RW(*pBuf++);
CSN = 1; //关闭SPI
return(status); //
}
//检测24L01是否存在
//返回值:0,成功;1,失败
u8 NRF24L01_Check(void)
{
u8 buf[5]={0XA5,0XA5,0XA5,0XA5,0XA5};
u8 i;
NRF24L01_Write_Buf(WRITE_NRF_REG+TX_ADDR,buf,5);//写入5个字节的地址。
NRF24L01_Read_Buf(TX_ADDR,buf,5); //读出写入的地址
for(i=0;i《5;i++) if(buf[i]!=0XA5)break;
if(i!=5)return 1;//检测24L01错误
return 0; //检测到24L01
}
u8 NRF24L01_TxPacket(u8 *txbuf)
{
u8 sta;
NRF24L01_CE=0;
NRF24L01_Write_Buf(WR_TX_PLOAD,txbuf,TX_PLOAD_WIDTH);//写数据到TX BUF 32个字节
NRF24L01_CE=1;//启动发送
while(NRF24L01_IRQ!=0);//等待发送完成
sta=NRF24L01_Read_Reg(STATUS); //读取状态寄存器的值
NRF24L01_Write_Reg(WRITE_NRF_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
if(sta&MAX_TX)//达到最大重发次数
{
NRF24L01_Write_Reg(FLUSH_TX,0xff);//清除TX FIFO寄存器
return MAX_TX;
}
if(sta&TX_OK)//发送完成
{
return TX_OK;
}
return 0xff;//其他原因发送失败
}
//启动NRF24L01发送一次数据
//txbuf:待发送数据首地址
//返回值:0,接收完成;其他,错误代码
u8 NRF24L01_RxPacket(u8 *rxbuf)
{
u8 sta;
sta=NRF24L01_Read_Reg(STATUS); //读取状态寄存器的值
NRF24L01_Write_Reg(WRITE_NRF_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
if(sta&RX_OK)//接收到数据
{
NRF24L01_Read_Buf(RD_RX_PLOAD,rxbuf,RX_PLOAD_WIDTH);//读取数据
NRF24L01_Write_Reg(FLUSH_RX,0xff);//清除RX FIFO寄存器
return 0;
}
return 1;//没收到任何数据
}
//该函数初始化NRF24L01到RX模式
//设置RX地址,写RX数据宽度,选择RF频道,波特率和LNA HCURR
//当CE变高后,即进入RX模式,并可以接收数据了
void RX_Mode(void)
{
NRF24L01_CE=0;
NRF24L01_Write_Buf(WRITE_NRF_REG+RX_ADDR_P0,(u8*)RX_ADDRESS,RX_ADR_WIDTH);//写RX节点地址
NRF24L01_Write_Reg(WRITE_NRF_REG+EN_AA,0x01); //使能通道0的自动应答
NRF24L01_Write_Reg(WRITE_NRF_REG+EN_RXADDR,0x01);//使能通道0的接收地址
NRF24L01_Write_Reg(WRITE_NRF_REG+RF_CH,40); //设置RF通信频率
NRF24L01_Write_Reg(WRITE_NRF_REG+RX_PW_P0,RX_PLOAD_WIDTH);//选择通道0的有效数据宽度
NRF24L01_Write_Reg(WRITE_NRF_REG+RF_SETUP,0x0f);//设置TX发射参数,0db增益,2Mbps,低噪声增益开启
NRF24L01_Write_Reg(WRITE_NRF_REG+CONFIG, 0x0f);//配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC,接收模式
NRF24L01_CE = 1; //CE为高,进入接收模式
}
//该函数初始化NRF24L01到TX模式
//设置TX地址,写TX数据宽度,设置RX自动应答的地址,填充TX发送数据,选择RF频道,波特率和LNA HCURR
//PWR_UP,CRC使能
//当CE变高后,即进入RX模式,并可以接收数据了
//CE为高大于10us,则启动发送。
void TX_Mode(void)
{
NRF24L01_CE=0;
NRF24L01_Write_Buf(WRITE_NRF_REG+TX_ADDR,(u8*)TX_ADDRESS,TX_ADR_WIDTH);//写TX节点地址
NRF24L01_Write_Buf(WRITE_NRF_REG+RX_ADDR_P0,(u8*)RX_ADDRESS,RX_ADR_WIDTH); //设置TX节点地址,主要为了使能ACK
NRF24L01_Write_Reg(WRITE_NRF_REG+EN_AA,0x01); //使能通道0的自动应答
NRF24L01_Write_Reg(WRITE_NRF_REG+EN_RXADDR,0x01); //使能通道0的接收地址
NRF24L01_Write_Reg(WRITE_NRF_REG+SETUP_RETR,0x1a);//设置自动重发间隔时间:500us + 86us;最大自动重发次数:10次
NRF24L01_Write_Reg(WRITE_NRF_REG+RF_CH,40); //设置RF通道为40
NRF24L01_Write_Reg(WRITE_NRF_REG+RF_SETUP,0x0f); //设置TX发射参数,0db增益,2Mbps,低噪声增益开启
NRF24L01_Write_Reg(WRITE_NRF_REG+CONFIG,0x0e); //配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC,接收模式,开启所有中断
NRF24L01_CE=1;//CE为高,10us后启动发送
inerDelay_us(20);
}
举报