电子滤波器识图方法
1. 电子滤波器
图 6 所示是电子滤波器。电路中的 VT1 是三极管,起到滤波管作用, C1 是 VT1 的基极滤波电容,R1 是 VT1 的基极偏置电阻,RL 是这一滤波电路的负载,C2 是输出电压的滤波电容。
电子滤波电路工作原理如下:
① 电路中的 VT1、 R1、 C1 组成电子滤波器电路,这一电路相当于一 只容量为 C1×β1 大小电容器,β1 为 VT1 的电流放大倍数,而晶体管的电流放大倍数比较大,所以等效电容量很大,可见电子滤波器的滤波性能是很好的。等效电路如图 6(b)所示。图中 C 为等效电容。
② 电路中的 R1 和 C1 构成一节 RC 滤波电路, R1 一方面为 VT1 提供基极偏置电流,同时也是滤波电阻。由于流过 R1 的电流是 VT1 的基极偏置电流,这一电流很小, R1 的阻值可以取得比较大,这样 R1 和 C1 的滤 波效果就很好,使 VT1 基极上直流电压中的交流成分很少。由于发射极电压具有跟随基极电压的特性,这样 VT1 发射极输出电压中交流成分也很少,达到滤波的目的。
③ 在电子滤波器中,滤波主要是靠 R1 和 C1 实现的,这也是 RC 滤波电路,但与前面介绍的 RC 滤波电路是不同的。在这一电路中流过负载的直流电流是 VT1 的发射极电流,流过滤波电阻 R1 的电流是 VT1 基极电流,基极电流很小,所以可以使滤波电阻 R1 的阻值设得很大(滤波效果好),但不会使直流输出电压下降很多。
④ 电路中的 R1 的阻值大小决定了 VT1 的基极电流大小,从而决定了 VT1 集电极与发射极之间的管压降,也就决定了 VT1 发射极输出直流电压大小,所以改变 R1 的大小,可以调整直流输出电压 +V 的大小。
2. 电子稳压滤波器
图 7 所示是另一种电子稳压滤波器,与前一种电路相比,在 VT1 基极与地端之间接入了稳压二极管 VD1。电子稳压原理如下:
在 VT1 基极与地端之间接入了稳压二极管 VD1 后,输入电压经 R1 使稳压二极管 VD1 处于反向偏置状态,此时 VD1 的稳压特性使 VT1 管的基极电压稳定,这样 VT1 发射极输出的直流电压也比较稳定。注意:这一电压的稳定特性是由于 VD1 的稳压特性决定的,与电子滤波器电路本身没有关系。
R1 同时还是 VD1 的限流保护电阻。在加入稳压二极管 VD1 后,改变 R1 的大小不能改变 VT1 发射极输出电压大小,由于 VT1 的发射结存在 PN 结电压降,所以发射极输出电压比 VD1 的稳压值略小。
C1、 R1 与 VT1 同样组成电子滤波器电路,起到滤波作用。
在有些场合下,为了进一步提高滤波效果,可采用双管电子滤波器电路,2 只电子滤波管构成了复合管电路。这样总的电流放大倍数为各管电流放大倍数之积,显然可以提高滤波效果。
电源滤波电路识图小结
关于电源滤波电路分析主要注意以下几点:
(1)分析滤波电容工作原理时,主要利用电容器的“隔直通交”特性,或是充电与放电特性,即整流电路输出单向脉动性直流电压时对滤波电容充电,当没有单向脉动性直流电压输出时,滤波电容对负载放电。
(2)分析滤波电感工作原理时,主要是认识电感器对直流电的电阻很小、无感抗作用,而对交流电存在感抗。
(3)进行电子滤波器电路分析时,要知道电子滤波管基极上的电容是滤波的关键元件。另外,要进行直流电路的分析,电子滤波管有基极电流和集电极、发射极电流,流过负载的电流是电子滤波管的发射极电流,改变基极电流大小可以调节电子滤波管集电极与发射极之间的管压降,从而改变电子滤波器输出的直流电压大小。
(4)电子滤波器本身没有稳压功能,但加入稳压二极管之后可以使输出的直流电压比较稳定。
电子滤波器识图方法
1. 电子滤波器
图 6 所示是电子滤波器。电路中的 VT1 是三极管,起到滤波管作用, C1 是 VT1 的基极滤波电容,R1 是 VT1 的基极偏置电阻,RL 是这一滤波电路的负载,C2 是输出电压的滤波电容。
电子滤波电路工作原理如下:
① 电路中的 VT1、 R1、 C1 组成电子滤波器电路,这一电路相当于一 只容量为 C1×β1 大小电容器,β1 为 VT1 的电流放大倍数,而晶体管的电流放大倍数比较大,所以等效电容量很大,可见电子滤波器的滤波性能是很好的。等效电路如图 6(b)所示。图中 C 为等效电容。
② 电路中的 R1 和 C1 构成一节 RC 滤波电路, R1 一方面为 VT1 提供基极偏置电流,同时也是滤波电阻。由于流过 R1 的电流是 VT1 的基极偏置电流,这一电流很小, R1 的阻值可以取得比较大,这样 R1 和 C1 的滤 波效果就很好,使 VT1 基极上直流电压中的交流成分很少。由于发射极电压具有跟随基极电压的特性,这样 VT1 发射极输出电压中交流成分也很少,达到滤波的目的。
③ 在电子滤波器中,滤波主要是靠 R1 和 C1 实现的,这也是 RC 滤波电路,但与前面介绍的 RC 滤波电路是不同的。在这一电路中流过负载的直流电流是 VT1 的发射极电流,流过滤波电阻 R1 的电流是 VT1 基极电流,基极电流很小,所以可以使滤波电阻 R1 的阻值设得很大(滤波效果好),但不会使直流输出电压下降很多。
④ 电路中的 R1 的阻值大小决定了 VT1 的基极电流大小,从而决定了 VT1 集电极与发射极之间的管压降,也就决定了 VT1 发射极输出直流电压大小,所以改变 R1 的大小,可以调整直流输出电压 +V 的大小。
2. 电子稳压滤波器
图 7 所示是另一种电子稳压滤波器,与前一种电路相比,在 VT1 基极与地端之间接入了稳压二极管 VD1。电子稳压原理如下:
在 VT1 基极与地端之间接入了稳压二极管 VD1 后,输入电压经 R1 使稳压二极管 VD1 处于反向偏置状态,此时 VD1 的稳压特性使 VT1 管的基极电压稳定,这样 VT1 发射极输出的直流电压也比较稳定。注意:这一电压的稳定特性是由于 VD1 的稳压特性决定的,与电子滤波器电路本身没有关系。
R1 同时还是 VD1 的限流保护电阻。在加入稳压二极管 VD1 后,改变 R1 的大小不能改变 VT1 发射极输出电压大小,由于 VT1 的发射结存在 PN 结电压降,所以发射极输出电压比 VD1 的稳压值略小。
C1、 R1 与 VT1 同样组成电子滤波器电路,起到滤波作用。
在有些场合下,为了进一步提高滤波效果,可采用双管电子滤波器电路,2 只电子滤波管构成了复合管电路。这样总的电流放大倍数为各管电流放大倍数之积,显然可以提高滤波效果。
电源滤波电路识图小结
关于电源滤波电路分析主要注意以下几点:
(1)分析滤波电容工作原理时,主要利用电容器的“隔直通交”特性,或是充电与放电特性,即整流电路输出单向脉动性直流电压时对滤波电容充电,当没有单向脉动性直流电压输出时,滤波电容对负载放电。
(2)分析滤波电感工作原理时,主要是认识电感器对直流电的电阻很小、无感抗作用,而对交流电存在感抗。
(3)进行电子滤波器电路分析时,要知道电子滤波管基极上的电容是滤波的关键元件。另外,要进行直流电路的分析,电子滤波管有基极电流和集电极、发射极电流,流过负载的电流是电子滤波管的发射极电流,改变基极电流大小可以调节电子滤波管集电极与发射极之间的管压降,从而改变电子滤波器输出的直流电压大小。
(4)电子滤波器本身没有稳压功能,但加入稳压二极管之后可以使输出的直流电压比较稳定。
举报