车辆中的AI应用
2.1.传感器数据处理
自动驾驶车辆在运行期间,无数传感器为车辆的中央计算机提供数据,包括道路信息、道路上的其他车辆信息,以及如人类能够感知到的那样,能够检测到的任何障碍物信息。有些传感器甚至可以提供比普通人更好的感知能力,但要做到这一点就需要智能算法,用以理解实时生成的数据流。
智能算法的主要任务之一是检测和识别车辆前方和周围的物体。人工神经网络(ANN)是用于该任务的典型算法,也称为深度学习,因为神经网络包含许多层级,而每个层级又包含许多节点。图2中显示了一个深度神经网络,不过实际中的神经网络其节点数和层数可能要多很多。
图2: 深度神经网络示意图(来源:Beachler, 2019)
视频输入分析使用机器学习算法和最可能的神经网络对对象进行分类。由于我们
有多个不同类型的传感器,因此为每个传感器配备专用的硬件/软件模块是很有必要的。这种方法允许并行处理数据,因此可以更快做出决策。每个传感器单元可以利用不同的AI算法,然后将其结果传达给其它单元或中央处理计算机。
2.2.路径规划
路径规划对于优化车辆线路并生成更好的交通模式非常重要。它有助于降低延迟并避免道路拥堵。对人工智能算法来说,规划也是一项非常适合它的任务。因为它是一个动态任务,可以将很多因素考虑进去,并在执行路径时解决优化问题。路径规划的定义如下:“路径规划使自动驾驶车辆能够找到从A点到B点之间最安全、最便捷、最经济的路线,它利用以往的驾驶经验帮助AI系统在未来提供更准确的决策。”。
2.3.路径执行
路径规划好之后,车辆就可以通过检测物体、行人、自行车和交通信号灯来了解道路状况,通过导航到达目的地。目标检测算法是AI社区的主要关注点,因为它能够实现仿人类行为。但当道路情况不同或天气条件变化时,挑战就来了。很多测试车辆出事故都是由于模拟环境与现实环境的条件不同,而AI软件若接收到未知数据,可能做出不可预测的反应。
2.4.监测车辆状况
最具前景的维护类型是预测性维护。它的定义如下:“预测性维护利用监测和预测模型来确定机器状况,并预测可能发生的故障以及何时会发生”。它尝试预测未来的问题,而不是现在已经存在的问题。从这方面来讲,预测性维护可以节省大量时间和金钱。有监督学习和无监督学习都可用于预测性维护。其算法能够根据机载和机外数据来做出预测性维护决策。用于该任务的机器学习算法属于分类算法,例如逻辑回归、支持向量机和随机森林算法等。
2.5.保险数据收集
车辆的数据日志可以包含有关驾驶员行为的信息。这些数据可以用来分析交通事故,也可用于处理车险索赔。所有这些都有助于降低保险价格,因为安全性更加确定和有保证。对于全自动驾驶车辆来说,赔偿责任将从乘客(不再是驾驶员)转移到制造商。而对半自动驾驶车辆来说,驾驶员仍可能承担一部分责任。证明这类情况将越来越依赖于车辆AI系统所捕获的智能数据。来自所有传感器的数据会生成巨量的信息,随时保存所有数据可能不切实际,但是保存相关数据快照似乎是获得证据的折中方法,这些证据可用于特定交通事件的事后分析。这个方法类似于黑匣子保存数据的方法,在碰撞事故发生后可以根据这些数据进行分析。
车辆中的AI应用
2.1.传感器数据处理
自动驾驶车辆在运行期间,无数传感器为车辆的中央计算机提供数据,包括道路信息、道路上的其他车辆信息,以及如人类能够感知到的那样,能够检测到的任何障碍物信息。有些传感器甚至可以提供比普通人更好的感知能力,但要做到这一点就需要智能算法,用以理解实时生成的数据流。
智能算法的主要任务之一是检测和识别车辆前方和周围的物体。人工神经网络(ANN)是用于该任务的典型算法,也称为深度学习,因为神经网络包含许多层级,而每个层级又包含许多节点。图2中显示了一个深度神经网络,不过实际中的神经网络其节点数和层数可能要多很多。
图2: 深度神经网络示意图(来源:Beachler, 2019)
视频输入分析使用机器学习算法和最可能的神经网络对对象进行分类。由于我们
有多个不同类型的传感器,因此为每个传感器配备专用的硬件/软件模块是很有必要的。这种方法允许并行处理数据,因此可以更快做出决策。每个传感器单元可以利用不同的AI算法,然后将其结果传达给其它单元或中央处理计算机。
2.2.路径规划
路径规划对于优化车辆线路并生成更好的交通模式非常重要。它有助于降低延迟并避免道路拥堵。对人工智能算法来说,规划也是一项非常适合它的任务。因为它是一个动态任务,可以将很多因素考虑进去,并在执行路径时解决优化问题。路径规划的定义如下:“路径规划使自动驾驶车辆能够找到从A点到B点之间最安全、最便捷、最经济的路线,它利用以往的驾驶经验帮助AI系统在未来提供更准确的决策。”。
2.3.路径执行
路径规划好之后,车辆就可以通过检测物体、行人、自行车和交通信号灯来了解道路状况,通过导航到达目的地。目标检测算法是AI社区的主要关注点,因为它能够实现仿人类行为。但当道路情况不同或天气条件变化时,挑战就来了。很多测试车辆出事故都是由于模拟环境与现实环境的条件不同,而AI软件若接收到未知数据,可能做出不可预测的反应。
2.4.监测车辆状况
最具前景的维护类型是预测性维护。它的定义如下:“预测性维护利用监测和预测模型来确定机器状况,并预测可能发生的故障以及何时会发生”。它尝试预测未来的问题,而不是现在已经存在的问题。从这方面来讲,预测性维护可以节省大量时间和金钱。有监督学习和无监督学习都可用于预测性维护。其算法能够根据机载和机外数据来做出预测性维护决策。用于该任务的机器学习算法属于分类算法,例如逻辑回归、支持向量机和随机森林算法等。
2.5.保险数据收集
车辆的数据日志可以包含有关驾驶员行为的信息。这些数据可以用来分析交通事故,也可用于处理车险索赔。所有这些都有助于降低保险价格,因为安全性更加确定和有保证。对于全自动驾驶车辆来说,赔偿责任将从乘客(不再是驾驶员)转移到制造商。而对半自动驾驶车辆来说,驾驶员仍可能承担一部分责任。证明这类情况将越来越依赖于车辆AI系统所捕获的智能数据。来自所有传感器的数据会生成巨量的信息,随时保存所有数据可能不切实际,但是保存相关数据快照似乎是获得证据的折中方法,这些证据可用于特定交通事件的事后分析。这个方法类似于黑匣子保存数据的方法,在碰撞事故发生后可以根据这些数据进行分析。
举报