直流无源误差
所有无源组件都有误差与其相关,尤其是电阻。表面上看,电阻似乎是比较简单的器件,但实际上,如果其规格不符合设计要求,则在整个信号链中都有可能导致误差。这里不会讨论如何选择正确的电阻类型及其构成。但要记住,根据具体的应用,有些电阻类型可能比其他更合适。
阻性直流误差源于不理想的电阻容差。简单地指定容差值是不够的。然而,对电阻误差容差过分挑剔也可能产生不利影响,使得分析过于复杂。在为给定的信号链指定电阻类型时,至少要注意四个至关重要的技术规格:
值容差,单位通常为%。
温度系数或漂移,单位通常为ppm/°C。
寿命漂移或合格性,通常以指定小时数内的%为单位(通常为1000)。
值容差比,当网络中或同一封装中有两个或以上的电阻且值匹配时,值容差以%为单位。
为了说明电阻误差是如何累积起来的(图6),我们来看看下面这个例子:假设有一个100 Ω的电阻,其值容差为1%,温度漂移为100 ppm/°C,寿命容差为5%,则在5000小时的寿命周期内,在85°C的温度范围内,其电阻为93.15 Ω至106.85 Ω:

图6. 此图所示为一个电阻误差模型。
总容差(RVALUE + RTOL + RCOEFF + RLIFE) = (RVALUE + ((RTOL/100) × RVALUE)+ (((RCOEFF × 0.000001) ×温度范围) ×RVALUE) + ((RLIFE/100) × RVALUE))= 94 Ω 至106 Ω。
来之不易的信息边注:有些组件的寿命周期只有1000小时,但设计的要求可能要长得多,比如,10,000小时。为了解决这个问题,不要将1000小时乘以8.77 (8766小时/年);这样做太过悲 观了。任何精密模拟电路中的长期漂移都会有一定的“随机 游动”量。正确的做法是用此数值的平方根,即 √8.766 = ~3再乘以1000小时。因此,10,000小时的寿命周期为: √10.000 = 3.16 × 1000小时,如此等等。
需要注意的是,电容和电感也有误差。但这些误差通常可以忽略不计,在这类直流分析里并无多大的价值。另外,这些器件实际上是无功器件,对滤波和带宽容差的影响最大,本文的直流分析里同样没有考虑这一点。
直流无源误差
所有无源组件都有误差与其相关,尤其是电阻。表面上看,电阻似乎是比较简单的器件,但实际上,如果其规格不符合设计要求,则在整个信号链中都有可能导致误差。这里不会讨论如何选择正确的电阻类型及其构成。但要记住,根据具体的应用,有些电阻类型可能比其他更合适。
阻性直流误差源于不理想的电阻容差。简单地指定容差值是不够的。然而,对电阻误差容差过分挑剔也可能产生不利影响,使得分析过于复杂。在为给定的信号链指定电阻类型时,至少要注意四个至关重要的技术规格:
值容差,单位通常为%。
温度系数或漂移,单位通常为ppm/°C。
寿命漂移或合格性,通常以指定小时数内的%为单位(通常为1000)。
值容差比,当网络中或同一封装中有两个或以上的电阻且值匹配时,值容差以%为单位。
为了说明电阻误差是如何累积起来的(图6),我们来看看下面这个例子:假设有一个100 Ω的电阻,其值容差为1%,温度漂移为100 ppm/°C,寿命容差为5%,则在5000小时的寿命周期内,在85°C的温度范围内,其电阻为93.15 Ω至106.85 Ω:

图6. 此图所示为一个电阻误差模型。
总容差(RVALUE + RTOL + RCOEFF + RLIFE) = (RVALUE + ((RTOL/100) × RVALUE)+ (((RCOEFF × 0.000001) ×温度范围) ×RVALUE) + ((RLIFE/100) × RVALUE))= 94 Ω 至106 Ω。
来之不易的信息边注:有些组件的寿命周期只有1000小时,但设计的要求可能要长得多,比如,10,000小时。为了解决这个问题,不要将1000小时乘以8.77 (8766小时/年);这样做太过悲 观了。任何精密模拟电路中的长期漂移都会有一定的“随机 游动”量。正确的做法是用此数值的平方根,即 √8.766 = ~3再乘以1000小时。因此,10,000小时的寿命周期为: √10.000 = 3.16 × 1000小时,如此等等。
需要注意的是,电容和电感也有误差。但这些误差通常可以忽略不计,在这类直流分析里并无多大的价值。另外,这些器件实际上是无功器件,对滤波和带宽容差的影响最大,本文的直流分析里同样没有考虑这一点。
举报