射频微机电组件
在上面的讨论中,我们可以确定CMOS是最有资格成为射频SoC的技术,然而我们也提到利用CMOS来制作射频单芯片仍然会遇一些与生俱来的障碍,而MEMS技术正可补足CMOS电子电路不足的地方。以下我们简介目前比较可行的RF MEMS器件。
切换器
在无线通信系统中,切换器都用在最前端,主要是作为传送和收发信号的切换。现在商业化的产品主要是采用固体电路,又有场效应晶体管和PIN二极管二种形式,而以材料而言主要为Si和GaAs二种。现在GaAs的PIN二极管式的微切换器由于插入损耗较低和切换速度快等已逐渐成为主流。然而其成本较高,又无法整合,因此成为微机电领域可以切入的一个目标,因为微机电式的切换器具有更低的插入损耗, 隔离性佳,且工作频率相宽广,已经有相当多研发的适合RF IC使用的切换开关。
可变电容
一般而言可变电容或称为Varactor,常用于可调滤波器和压控振荡器等。在CMOS上可以用PN结形成的结电容作为可变电容,其电容值会随着加在PN结两端的压降而变化,然而随着工作频率的上升,其Q值变得相当的低,在5GHz时Q值已和电感相当,如此一来便使得压控振荡器的相位噪声变得更差。相对而言,以MEMS制作的可变电容可以提供许多好处,如Q值的提升,较大的调谐范围,较高的工作频率。但受限于工艺,一般制作可变电容时以平行板电容为主。这种方式可变动的部分主要是平行板中间间距和二平行板的重复面积区域。研究显示电容可以从2.11pF变2.46pF,可变比例为16%,Q值可达62。
电感
电感在RF IC中扮演着极重要的角色,它对于很多电路设计都非常重要,例如,LNA,VCO,滤波器等。可惜利用CMOS工艺的电感却成了CMOS RF IC最大的障碍,它的低Q值低噪声放大器(LNA)的噪声过大,增益降低,另外也使压控振荡器(VCO)的相位噪声无法降低。
首先,仔细分析电感的模型可知Q值不高的原因主要有两个:
第一来自金属的损耗,由于传统CMOS工艺并没有提供一层高导电率的金属层,使得电感串联电阻不够低,直接影响了Q值,而且电阻值会因集肤效应随着频率的上升而增大。
第二主要来自基板的损耗,由于硅基板本身具有导电性,使得电感产生很多来自基板的杂散效应,另外也会有涡流电流出现,而这些不良的效应都会随着频率的增加变得更严重。
本文采用MEMS针对第二个损耗作改善,其作法是先在布局时就在IC上留下所欲蚀刻的图样,然后根据硅晶格的蚀刻特性对基板作深蚀刻,最后利用侧向蚀刻把电感下方的硅基板挖空,只剩电感悬浮在空中,如此一来,金属下面没有了导电层,那么涡流电流自然也没有了。另外金属和基板之间的电阻和电容也会减少,此实验结果如图3所示。不过这个方法只能让Q值在高频获得解决,如果想在2GHz以下的工作频率作改进,必须用另一个方式解决,那就是减低金属的损耗。解决金属损耗的最好方法,就要利用MEMS制程的高深宽比特性来实现厚膜金属的电感。
事实上已有许多文献发表了利用MEMS制作硅基板上的高Q值电感,而最成功的莫过于法国MEMSCAP公司所制造的电感,他们利用BCB来垫高电感以减轻上述来自基板的损耗,再加上超过10μm的电镀铜作为电感材料以减轻来自金属的损耗,获得Q值高达的电感器(图4)。
结语
最近,全世界最大的半导体制造商Intel披露了几项拓展硅晶体应用范围的研究方向,即CMOS基无线网络、微机电系统(MEMS)和光子芯片。由此可见RF和MEMS已经成了无法抵挡的世界潮流。而我们更进一步把MEMS实际应用在RF IC上,证明RF MEMS对于达到射频SoC不只可行,而且更是势在必行。
射频微机电组件
在上面的讨论中,我们可以确定CMOS是最有资格成为射频SoC的技术,然而我们也提到利用CMOS来制作射频单芯片仍然会遇一些与生俱来的障碍,而MEMS技术正可补足CMOS电子电路不足的地方。以下我们简介目前比较可行的RF MEMS器件。
切换器
在无线通信系统中,切换器都用在最前端,主要是作为传送和收发信号的切换。现在商业化的产品主要是采用固体电路,又有场效应晶体管和PIN二极管二种形式,而以材料而言主要为Si和GaAs二种。现在GaAs的PIN二极管式的微切换器由于插入损耗较低和切换速度快等已逐渐成为主流。然而其成本较高,又无法整合,因此成为微机电领域可以切入的一个目标,因为微机电式的切换器具有更低的插入损耗, 隔离性佳,且工作频率相宽广,已经有相当多研发的适合RF IC使用的切换开关。
可变电容
一般而言可变电容或称为Varactor,常用于可调滤波器和压控振荡器等。在CMOS上可以用PN结形成的结电容作为可变电容,其电容值会随着加在PN结两端的压降而变化,然而随着工作频率的上升,其Q值变得相当的低,在5GHz时Q值已和电感相当,如此一来便使得压控振荡器的相位噪声变得更差。相对而言,以MEMS制作的可变电容可以提供许多好处,如Q值的提升,较大的调谐范围,较高的工作频率。但受限于工艺,一般制作可变电容时以平行板电容为主。这种方式可变动的部分主要是平行板中间间距和二平行板的重复面积区域。研究显示电容可以从2.11pF变2.46pF,可变比例为16%,Q值可达62。
电感
电感在RF IC中扮演着极重要的角色,它对于很多电路设计都非常重要,例如,LNA,VCO,滤波器等。可惜利用CMOS工艺的电感却成了CMOS RF IC最大的障碍,它的低Q值低噪声放大器(LNA)的噪声过大,增益降低,另外也使压控振荡器(VCO)的相位噪声无法降低。
首先,仔细分析电感的模型可知Q值不高的原因主要有两个:
第一来自金属的损耗,由于传统CMOS工艺并没有提供一层高导电率的金属层,使得电感串联电阻不够低,直接影响了Q值,而且电阻值会因集肤效应随着频率的上升而增大。
第二主要来自基板的损耗,由于硅基板本身具有导电性,使得电感产生很多来自基板的杂散效应,另外也会有涡流电流出现,而这些不良的效应都会随着频率的增加变得更严重。
本文采用MEMS针对第二个损耗作改善,其作法是先在布局时就在IC上留下所欲蚀刻的图样,然后根据硅晶格的蚀刻特性对基板作深蚀刻,最后利用侧向蚀刻把电感下方的硅基板挖空,只剩电感悬浮在空中,如此一来,金属下面没有了导电层,那么涡流电流自然也没有了。另外金属和基板之间的电阻和电容也会减少,此实验结果如图3所示。不过这个方法只能让Q值在高频获得解决,如果想在2GHz以下的工作频率作改进,必须用另一个方式解决,那就是减低金属的损耗。解决金属损耗的最好方法,就要利用MEMS制程的高深宽比特性来实现厚膜金属的电感。
事实上已有许多文献发表了利用MEMS制作硅基板上的高Q值电感,而最成功的莫过于法国MEMSCAP公司所制造的电感,他们利用BCB来垫高电感以减轻上述来自基板的损耗,再加上超过10μm的电镀铜作为电感材料以减轻来自金属的损耗,获得Q值高达的电感器(图4)。
结语
最近,全世界最大的半导体制造商Intel披露了几项拓展硅晶体应用范围的研究方向,即CMOS基无线网络、微机电系统(MEMS)和光子芯片。由此可见RF和MEMS已经成了无法抵挡的世界潮流。而我们更进一步把MEMS实际应用在RF IC上,证明RF MEMS对于达到射频SoC不只可行,而且更是势在必行。
举报