瑞芯微Rockchip开发者社区
直播中

李丽华

7年用户 1448经验值
私信 关注
[经验]

一文了解高斯滤波器,附原理及实现过程

`本文主要介绍了高斯滤波器的原理及其实现过程

高斯滤波器是一种线性滤波器,能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器类似,都是取滤波器窗口内的像素的均值作为输出。其窗口模板的系数和均值滤波器不同,均值滤波器的模板系数都是相同的为1;而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小。所以,高斯滤波器相比于均值滤波器对图像个模糊程度较小。
什么是高斯滤波器
既然名称为高斯滤波器,那么其和高斯分布(正态分布)是有一定的关系的。一个二维的高斯函数如下:
1.jpg
其中(x,y)(x,y)为点坐标,在图像处理中可认为是整数;σσ是标准差。要想得到一个高斯滤波器的模板,可以对高斯函数进行离散化,得到的高斯函数值作为模板的系数。例如:要产生一个3×33×3的高斯滤波器模板,以模板的中心位置为坐标原点进行取样。模板在各个位置的坐标,如下所示(x轴水平向右,y轴竖直向下)
2.jpg
这样,将各个位置的坐标带入到高斯函数中,得到的值就是模板的系数。对于窗口模板的大小为(2k+1)×(2k+1),模板中各个元素值的计算公式如下:
3.jpg
这样计算出来的模板有两种形式:小数和整数。
  • 小数形式的模板,就是直接计算得到的值,没有经过任何的处理;

  • 整数形式的,则需要进行归一化处理,将模板左上角的值归一化为1,下面会具体介绍。使用整数的模板时,需要在模板的前面加一个系数,系数为 4.jpg
    • 也就是模板系数和的倒数。


    高斯模板的生成

    知道模板生成的原理,实现起来也就不困难了
    1. void generateGaussianTemplate(double window[][11], int ksize, double sigma)
    2. {
    3.     static const double pi = 3.1415926;
    4.     int center = ksize / 2; // 模板的中心位置,也就是坐标的原点
    5.     double x2, y2;
    6.     for (int i = 0; i < ksize; i++)
    7.     {
    8.         x2 = pow(i - center, 2);
    9.         for (int j = 0; j < ksize; j++)
    10.         {
    11.             y2 = pow(j - center, 2);
    12.             double g = exp(-(x2 + y2) / (2 * sigma * sigma));
    13.             g /= 2 * pi * sigma;
    14.             window[i][j] = g;
    15.         }
    16.     }
    17.     double k = 1 / window[0][0]; // 将左上角的系数归一化为1
    18.     for (int i = 0; i < ksize; i++)
    19.     {
    20.         for (int j = 0; j < ksize; j++)
    21.         {
    22.             window[i][j] *= k;
    23.         }
    24.     }
    25. }


    需要一个二维数组,存放生成的系数(这里假设模板的最大尺寸不会超过11);第二个参数是模板的大小(不要超过11);第三个参数就比较重要了,是高斯分布的标准差。
    生成的过程,首先根据模板的大小,找到模板的中心位置ksize/2。然后就是遍历,根据高斯分布的函数,计算模板中每个系数的值。
    需要注意的是,最后归一化的过程,使用模板左上角的系数的倒数作为归一化的系数(左上角的系数值被归一化为1),模板中的每个系数都乘以该值(左上角系数的倒数),然后将得到的值取整,就得到了整数型的高斯滤波器模板。下面截图生成的是,大小为3×3,σ=0.83×3,σ=0.8的模板
    5.jpg
    对上述解结果取整后得到如下模板:
    6.jpg
    这个模板就比较熟悉了,其就是根据σ=0.8的高斯函数生成的模板。至于小数形式的生成也比较简单,去掉归一化的过程,并且在求解过程后,模板的每个系数要除以所有系数的和。具体代码如下:
    1. void generateGaussianTemplate(double window[][11], int ksize, double sigma)
    2. {
    3.     static const double pi = 3.1415926;
    4.     int center = ksize / 2; // 模板的中心位置,也就是坐标的原点
    5.     double x2, y2;
    6.     double sum = 0;
    7.     for (int i = 0; i < ksize; i++)
    8.     {
    9.         x2 = pow(i - center, 2);
    10.         for (int j = 0; j < ksize; j++)
    11.         {
    12.             y2 = pow(j - center, 2);
    13.             double g = exp(-(x2 + y2) / (2 * sigma * sigma));
    14.             g /= 2 * pi * sigma;
    15.             sum += g;
    16.             window[i][j] = g;
    17.         }
    18.     }
    19.     //double k = 1 / window[0][0]; // 将左上角的系数归一化为1
    20.     for (int i = 0; i < ksize; i++)
    21.     {
    22.         for (int j = 0; j < ksize; j++)
    23.         {
    24.             window[i][j] /= sum;
    25.         }
    26.     }
    27. }
    3×3,σ=0.8的小数型模板。
    7.jpg
    σσ值的意义及选取

    通过上述的实现过程,不难发现,高斯滤波器模板的生成最重要的参数就是高斯分布的标准差σσ。标准差代表着数据的离散程度,如果σσ较小,那么生成的模板的中心系数较大,而周围的系数较小,这样对图像的平滑效果就不是很明显;反之,σσ较大,则生成的模板的各个系数相差就不是很大,比较类似均值模板,对图像的平滑效果比较明显。

    来看下一维高斯分布的概率分布密度图:
    8.jpg
    横轴表示可能得取值x,竖轴表示概率分布密度F(x),那么不难理解这样一个曲线与x轴围成的图形面积为1。σσ(标准差)决定了这个图形的宽度,可以得出这样的结论:σσ越大,则图形越宽,尖峰越小,图形较为平缓;σσ越小,则图形越窄,越集中,中间部分也就越尖,图形变化比较剧烈。这其实很好理解,如果sigma也就是标准差越大,则表示该密度分布一定比较分散,由于面积为1,于是尖峰部分减小,宽度越宽(分布越分散);同理,当σσ越小时,说明密度分布较为集中,于是尖峰越尖,宽度越窄!



    于是可以得到如下结论:

    σσ越大,分布越分散,各部分比重差别不大,于是生成的模板各元素值差别不大,类似于平均模板;

    σσ越小,分布越集中,中间部分所占比重远远高于其他部分,反映到高斯模板上就是中心元素值远远大于其他元素值,于是自然而然就相当于中间值得点运算。



    基于OpenCV的实现





    在生成高斯模板好,其简单的实现和其他的空间滤波器没有区别,具体代码如下:
    1. void GaussianFilter(const Mat &src, Mat &dst, int ksize, double sigma)
    2. {
    3.     CV_Assert(src.channels() || src.channels() == 3); // 只处理单通道或者三通道图像
    4.     const static double pi = 3.1415926;
    5.     // 根据窗口大小和sigma生成高斯滤波器模板
    6.     // 申请一个二维数组,存放生成的高斯模板矩阵
    7.     double **templateMatrix = new double*[ksize];
    8.     for (int i = 0; i < ksize; i++)
    9.         templateMatrix[i] = new double[ksize];
    10.     int origin = ksize / 2; // 以模板的中心为原点
    11.     double x2, y2;
    12.     double sum = 0;
    13.     for (int i = 0; i < ksize; i++)
    14.     {
    15.         x2 = pow(i - origin, 2);
    16.         for (int j = 0; j < ksize; j++)
    17.         {
    18.             y2 = pow(j - origin, 2);
    19.             // 高斯函数前的常数可以不用计算,会在归一化的过程中给消去
    20.             double g = exp(-(x2 + y2) / (2 * sigma * sigma));
    21.             sum += g;
    22.             templateMatrix[i][j] = g;
    23.         }
    24.     }
    25.     for (int i = 0; i < ksize; i++)
    26.     {
    27.         for (int j = 0; j < ksize; j++)
    28.         {
    29.             templateMatrix[i][j] /= sum;
    30.             cout << templateMatrix[i][j] << " ";
    31.         }
    32.         cout << endl;
    33.     }
    34.     // 将模板应用到图像中
    35.     int border = ksize / 2;
    36.     copyMakeBorder(src, dst, border, border, border, border, BorderTypes::BORDER_REFLECT);
    37.     int channels = dst.channels();
    38.     int rows = dst.rows - border;
    39.     int cols = dst.cols - border;
    40.     for (int i = border; i < rows; i++)
    41.     {
    42.         for (int j = border; j < cols; j++)
    43.         {
    44.             double sum[3] = { 0 };
    45.             for (int a = -border; a <= border; a++)
    46.             {
    47.                 for (int b = -border; b <= border; b++)
    48.                 {
    49.                     if (channels == 1)
    50.                     {
    51.                         sum[0] += templateMatrix[border + a][border + b] * dst.at(i + a, j + b);
    52.                     }
    53.                     else if (channels == 3)
    54.                     {
    55.                         Vec3b rgb = dst.at(i + a, j + b);
    56.                         auto k = templateMatrix[border + a][border + b];
    57.                         sum[0] += k * rgb[0];
    58.                         sum[1] += k * rgb[1];
    59.                         sum[2] += k * rgb[2];
    60.                     }
    61.                 }
    62.             }
    63.             for (int k = 0; k < channels; k++)
    64.             {
    65.                 if (sum[k] < 0)
    66.                     sum[k] = 0;
    67.                 else if (sum[k] > 255)
    68.                     sum[k] = 255;
    69.             }
    70.             if (channels == 1)
    71.                 dst.at(i, j) = static_cast(sum[0]);
    72.             else if (channels == 3)
    73.             {
    74.                 Vec3b rgb = { static_cast(sum[0]), static_cast(sum[1]), static_cast(sum[2]) };
    75.                 dst.at(i, j) = rgb;
    76.             }
    77.         }
    78.     }
    79.     // 释放模板数组
    80.     for (int i = 0; i < ksize; i++)
    81.         delete[] templateMatrix[i];
    82.     delete[] templateMatrix;
    83. }
    只处理单通道或者三通道图像,模板生成后,其滤波(卷积过程)就比较简单了。不过,这样的高斯滤波过程,其循环运算次数为m×n×ksize2,其中m,n为图像的尺寸;ksize为高斯滤波器的尺寸。这样其时间复杂度为O(ksize2),随滤波器的模板的尺寸呈平方增长,当高斯滤波器的尺寸较大时,其运算效率是极低的。为了,提高滤波的运算速度,可以将二维的高斯滤波过程分解开来。


    分离实现高斯滤波

    由于高斯函数的可分离性,尺寸较大的高斯滤波器可以分成两步进行:首先将图像在水平(竖直)方向与一维高斯函数进行卷积;然后将卷积后的结果在竖直(水平)方向使用相同的一维高斯函数得到的模板进行卷积运算。具体实现代码如下:
    1. // 分离的计算
    2. void separateGaussianFilter(const Mat &src, Mat &dst, int ksize, double sigma)
    3. {
    4.     CV_Assert(src.channels()==1 || src.channels() == 3); // 只处理单通道或者三通道图像
    5.     // 生成一维的高斯滤波模板
    6.     double *matrix = new double[ksize];
    7.     double sum = 0;
    8.     int origin = ksize / 2;
    9.     for (int i = 0; i < ksize; i++)
    10.     {
    11.         // 高斯函数前的常数可以不用计算,会在归一化的过程中给消去
    12.         double g = exp(-(i - origin) * (i - origin) / (2 * sigma * sigma));
    13.         sum += g;
    14.         matrix[i] = g;
    15.     }
    16.     // 归一化
    17.     for (int i = 0; i < ksize; i++)
    18.         matrix[i] /= sum;
    19.     // 将模板应用到图像中
    20.     int border = ksize / 2;
    21.     copyMakeBorder(src, dst, border, border, border, border, BorderTypes::BORDER_REFLECT);
    22.     int channels = dst.channels();
    23.     int rows = dst.rows - border;
    24.     int cols = dst.cols - border;
    25.     // 水平方向
    26.     for (int i = border; i < rows; i++)
    27.     {
    28.         for (int j = border; j < cols; j++)
    29.         {
    30.             double sum[3] = { 0 };
    31.             for (int k = -border; k <= border; k++)
    32.             {
    33.                 if (channels == 1)
    34.                 {
    35.                     sum[0] += matrix[border + k] * dst.at(i, j + k); // 行不变,列变化;先做水平方向的卷积
    36.                 }
    37.                 else if (channels == 3)
    38.                 {
    39.                     Vec3b rgb = dst.at(i, j + k);
    40.                     sum[0] += matrix[border + k] * rgb[0];
    41.                     sum[1] += matrix[border + k] * rgb[1];
    42.                     sum[2] += matrix[border + k] * rgb[2];
    43.                 }
    44.             }
    45.             for (int k = 0; k < channels; k++)
    46.             {
    47.                 if (sum[k] < 0)
    48.                     sum[k] = 0;
    49.                 else if (sum[k] > 255)
    50.                     sum[k] = 255;
    51.             }
    52.             if (channels == 1)
    53.                 dst.at(i, j) = static_cast(sum[0]);
    54.             else if (channels == 3)
    55.             {
    56.                 Vec3b rgb = { static_cast(sum[0]), static_cast(sum[1]), static_cast(sum[2]) };
    57.                 dst.at(i, j) = rgb;
    58.             }
    59.         }
    60.     }
    61.     // 竖直方向
    62.     for (int i = border; i < rows; i++)
    63.     {
    64.         for (int j = border; j < cols; j++)
    65.         {
    66.             double sum[3] = { 0 };
    67.             for (int k = -border; k <= border; k++)
    68.             {
    69.                 if (channels == 1)
    70.                 {
    71.                     sum[0] += matrix[border + k] * dst.at(i + k, j); // 列不变,行变化;竖直方向的卷积
    72.                 }
    73.                 else if (channels == 3)
    74.                 {
    75.                     Vec3b rgb = dst.at(i + k, j);
    76.                     sum[0] += matrix[border + k] * rgb[0];
    77.                     sum[1] += matrix[border + k] * rgb[1];
    78.                     sum[2] += matrix[border + k] * rgb[2];
    79.                 }
    80.             }
    81.             for (int k = 0; k < channels; k++)
    82.             {
    83.                 if (sum[k] < 0)
    84.                     sum[k] = 0;
    85.                 else if (sum[k] > 255)
    86.                     sum[k] = 255;
    87.             }
    88.             if (channels == 1)
    89.                 dst.at(i, j) = static_cast(sum[0]);
    90.             else if (channels == 3)
    91.             {
    92.                 Vec3b rgb = { static_cast(sum[0]), static_cast(sum[1]), static_cast(sum[2]) };
    93.                 dst.at(i, j) = rgb;
    94.             }
    95.         }
    96.     }
    97.     delete[] matrix;
    98. }
    代码没有重构较长,不过其实现原理是比较简单的。首先得到一维高斯函数的模板,在卷积(滤波)的过程中,保持行不变,列变化,在水平方向上做卷积运算;接着在上述得到的结果上,保持列不边,行变化,在竖直方向上做卷积运算。这样分解开来,算法的时间复杂度为O(ksize)O(ksize),运算量和滤波器的模板尺寸呈线性增长。

    在OpenCV也有对高斯滤波器的封装GaussianBlur,其声明如下:
    1. CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
    2.                                 double sigmaX, double sigmaY = 0,
    3.                                 int borderType = BORDER_DEFAULT );

    二维高斯函数的标准差在x和y方向上应该分别有一个标准差,在上面的代码中一直设其在x和y方向的标准是相等的,在OpenCV中的高斯滤波器中,可以在x和y方向上设置不同的标准差。



    下图是自己实现的高斯滤波器和OpenCV中的GaussianBlur的结果对比

    上图是5×5,σ=0.8的高斯滤波器,可以看出两个实现得到的结果没有很大的区别。
    总结高斯滤波器是一种线性平滑滤波器,其滤波器的模板是对二维高斯函数离散得到。由于高斯模板的中心值最大,四周逐渐减小,其滤波后的结果相对于均值滤波器来说更好。
    高斯滤波器最重要的参数就是高斯分布的标准差σσ,标准差和高斯滤波器的平滑能力有很大的能力,σσ越大,高斯滤波器的频带就较宽,对图像的平滑程度就越好。通过调节σσ参数,可以平衡对图像的噪声的抑制和对图像的模糊。








` 9.jpg

更多回帖

发帖
×
20
完善资料,
赚取积分