验证天线的有效全向灵敏度(EIS) (θ, φ),有效全向辐射功率(EIPR) (θ, Φ)测量
为了验证近场(NF)测量方法,需要使用有效全向灵敏度(EIS) (θ, φ)和有效全向辐射功率(EIPR) (θ, Φ)的验证设备。由于在这个例子中8阵元天线和LTE是可分的,所以有效全向灵敏度(EIS) (θ, φ)和有效全向辐射功率(EIPR) (θ, Φ)结合设备的参考性能是由天线增益和执行测量LTE设备的灵敏度或辐射功率决定的。
使用近场(NF)技术的LTE协议8元阵列天线的有效全向灵敏度(EIS)测量
8元阵列天线的有效全向灵敏度(EIS)在1940 MHz情况下使用LTE协议已经通过近场(NF)测量并且和参考方案进行比较,以此来验证这种方法。使用相位补偿单元,在1940 MHz的中心频率10 MHz带宽下,EIS的仰角与方位角方向图和近场(NF)测量方向图,在图3中进行了比较。
和所期望的一样,方向图形状在方位和仰角方面都很相似。用这两种方法测量灵敏度为~1 dB的偏移,是根据近场(NF)测量和参考方案的不确定因素来判断的。近场(NF)测量主要的不确定性因素:距离校准、有效全向灵敏度(EIS)的灵敏度搜索精度。测量敏感性的范围校准和灵敏度的搜索精度被认为是参考方案主要的不确定性因素。
验证天线的有效全向灵敏度(EIS) (θ, φ),有效全向辐射功率(EIPR) (θ, Φ)测量
为了验证近场(NF)测量方法,需要使用有效全向灵敏度(EIS) (θ, φ)和有效全向辐射功率(EIPR) (θ, Φ)的验证设备。由于在这个例子中8阵元天线和LTE是可分的,所以有效全向灵敏度(EIS) (θ, φ)和有效全向辐射功率(EIPR) (θ, Φ)结合设备的参考性能是由天线增益和执行测量LTE设备的灵敏度或辐射功率决定的。
使用近场(NF)技术的LTE协议8元阵列天线的有效全向灵敏度(EIS)测量
8元阵列天线的有效全向灵敏度(EIS)在1940 MHz情况下使用LTE协议已经通过近场(NF)测量并且和参考方案进行比较,以此来验证这种方法。使用相位补偿单元,在1940 MHz的中心频率10 MHz带宽下,EIS的仰角与方位角方向图和近场(NF)测量方向图,在图3中进行了比较。
和所期望的一样,方向图形状在方位和仰角方面都很相似。用这两种方法测量灵敏度为~1 dB的偏移,是根据近场(NF)测量和参考方案的不确定因素来判断的。近场(NF)测量主要的不确定性因素:距离校准、有效全向灵敏度(EIS)的灵敏度搜索精度。测量敏感性的范围校准和灵敏度的搜索精度被认为是参考方案主要的不确定性因素。
举报