引 言
纵观
电子行业的发展,1992年只有40%的电子系统工作在30 MHz以上,而且器件多使用DIP、PLCC等体积大、引脚少的封装形式;到1994年,已有50%的设计达到了50 MHz的频率,采用PGA、QFP、RGA等封装的器件越来越多;1996年之后,高速设计在整个电子设计领域所占的比例越来越大,100 MHz以上的系统已随处可见,采用CS(线焊芯片级BGA)、FG(线焊脚距密集化BGA)、FF(倒装芯片小间距BGA)、BF(倒装芯片.BGA)、BG(标准BGA)等各种BGA封装的器件大量涌现,这些体积小、引脚数已达数百甚至上千的封装形式已越来越多地应用到各类高速、超高速电子系统中。
从IC芯片的发展及封装形式来看,芯片体积越来越小、引脚数越来越多;同时,由于近年来IC工艺的发展,使得其速度也越来越高。这就带来了一个问题,即电子设计的体积减小导致
电路的布局布线密度变大,而同时信号的频率还在提高,从而使得如何处理高速信号问题成为一个设计能否成功的关键因素。随着电子系统中逻辑复杂度和时钟频率的迅速提高,信号边沿不断变陡,印刷电路板的线迹互连和板层特性对系统电气性能的影响也越发重要。对于低频设计,线迹互连和板层的影响可以不考虑,但当频率超过50 MHz时,互连关系必须考虑,而在*定系统性能时还必须考虑印刷电路板板材的电参数。因此,高速系统的设计必须面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性(Signal Integrity,SI)问题。
当硬件工作频率增高后,每一根布线网络上的传输线都可能成为发射天线,对其他电子设备产生电磁辐射或与其他设备相互干扰,从而使硬件时序逻辑产生混乱。电磁兼容性(Electromagne
tic Compatibility,EMC)的标准提出了解决硬件实际布线网络可能产生的电磁辐射干扰以及本身抵抗外部电磁干扰的基本要求。