(d) 集电极电流波形
图3 实验测试波形图
在输入端增大串联电阻R1的阻值, 会使输入驱动波形的上升沿与下降沿(GE端电压) 的锐度减缓, 其影响是使IGBT的开通与关断的时间延长, 同时输出端(CE) 的上升沿与下降沿的锐度也同样减缓, 并可减小输出端CE两端电压的尖峰, 另外, 带给电源的高频谐波的峰值也在减小。但是, 这样会使IGBT的开关损耗增大。
GE端并联电容C1同样会使输入驱动波形的上升沿和下降沿锐度减缓, 这对输出端CE间电压上升延迟和下降延迟有减缓作用, 但该作用没有增加R1阻值的效果明显。
当R2减小, 即负载增大时, 随之增大的还有CE间电压尖峰和CE间电压波形的上升时间和下降时间, 以及电源端电压中交流成分的幅值。
直流电源两端并联的电解电容C2可以有效抑制电源两端的低频谐波, 谐波的频率在20kHz左右(与驱动信号频率相同), 在直流电源两端并联薄膜电容C3对高频谐波(几兆赫芝) 的抑制很有效。但是, 当两个电容同时作用时, 高频谐波依然会被引入, 这并没有达到我们预期的效果;对比直流电源电压在10V~100V时各种情况下的电压上升沿与下降沿时间可以发现: 上升时间与下降时间不会随着直流电源电压的增大而变化。也就是说: 在实际的全桥电路中, 这些参数不会跟随母线的变化而变化。
3 结束语
在实际电路中, 栅极电阻的选择要考虑开关速度的要求和损耗的大小。栅极电阻也不是越小越好, 当栅极电阻很小时, IGBT的CE间电压尖峰过大, 栅极电阻很大时, 又会增大开关损耗。
所以, 选择时要在CE间尖峰电压能够承受的范围内适当减小栅极电阻。
由于电路中的杂散电感会引起开关状态下电压和电流的尖峰和振铃, 所以, 在实际的驱动电路中, 连线要尽量短, 并且驱动电路和吸收电路应布置在同一个
PCB板上, 同时在靠近IGBT的GE间加双向稳压管, 以箝位引起的耦合到栅极的电压尖峰。