PLC
直播中

胖子的逆袭

12年用户 1130经验值
私信 关注

AGV小车运行系统有哪几个关键系统

AGV小车运行系统有哪几个关键系统?

如何通过改变两驱动轮的速度差实现AGV小车的转向及纠偏?

回帖(1)

蒋喜玲

2021-9-13 17:44:00
  AGV小车有三个关键系统,运行系统、导引系统、控制系统,其它还包括有路线系统及安全保护系统等。
  本文着重介绍AGV小车的三个关键系统。
  1 AGV小车运行系统
  AGV小车运行系统是由车轮、减速器、制动器、电机及速度控制器等部分组成。AGV小车常设计成三种运动方式:只能向前;能向前与向后;能纵向、横向、斜向及回转全方位运动。
  本次研究的AGV小车是能够前进、后退及回转全方位运动。AGV小车能够进行回转运动需要有转向装置。转向装置的结构也有三种:
  前轮转向后轮驱动三轮车型:
  车的转向和驱动分别由两个不同的电动机带动,车体的前部为转向车轮,车体后部为驱动电机驱动的两个轮。其结构简单、成本低,但定位精度较低。
  差速转向式四轮车型:
  车体的中部有两个驱动轮,由两个电机分别驱动。前后部各有一个转向轮(自由轮)。通过控制中部两个轮的速度比可实现车体的转向,并实现前后双向行驶和转向。这种方式结构简单,定位精度较高。
  全轮转向式四轮车型:
  车体的前后部各有两个驱动和转向一体化车轮,每个车轮分别由各自的电动机驱动,可实现沿纵向、横向、斜向和回转方向任意路线行走,控制较复杂。
  从成本及系统应用考虑,本文着重介绍差速转向式四轮车型。两驱动车轮由两伺服驱动器控制,伺服驱动器通过改变两车轮的速度大小、方向,实现AGV小车的前进、后退、加减速及转向动作。
  AGV小车通过伺服控制,很容易实现前进、后退及加减速,但如何通过改变两驱动轮的速度差,实现AGV小车的转向及纠偏?下面,我们首先了解一下差速转向式四轮车的运动模型。
  
  AGV小车运动状态及偏差示意图
  图中虚线表示的车体为初始位姿,实线表示的车体是在和初始时差为Δt时的位姿。AGV车子的左轮运行速度为Vr、右轮为Vl,AGV小车沿着A点作圆弧运动,转弯半径为d。可以得:
  ①
  
  AGV小车运动偏移弧度为Δθ,容易得:
  ②
  
  由式可得AGV小车运动偏移弧度Δθ与左右轮的速度关系式:
  ③
  
  AGV小车在做圆弧运动时,在X轴上的变化量是ΔX,在Y轴上的变化量是ΔY,ΔX、ΔY与转弯半径d的关系为:
  ④
  
  ⑤
  
  将①式代入④⑤式,可以得出ΔX、ΔY与左右轮运行速度的关系式:
  所以,通过改变Vr及Vl可以实现AGV小车纠偏,转向等运动控制。
  驱动轮的变速控制,有多种方法可选择,包括变频器控制、步进控制、伺服控制等。其中变频器控制及伺服控制除了有高精度的速度控制外,还能提供灵活的转矩控制。
  在AGV小车的运动模型中,其有干摩擦力矩、惯性转矩、粘性摩擦力矩、重力力矩、弹性力矩等。所以AGV小车在运行过程中,驱动器需要提供不同的力矩,AGV小车才能运行得更稳定。
  而伺服控制比变频器拥有更高的速度控制精度、更小的安装位置、更高的IP防护等级以及更好的停车制动功能。所以,伺服控制器作为AGV小车的运动控制系统使用是更为适合。
  2 AGV小车导引系统
  AGV小车能自动运行,需要有导引装置。常用的导引方式分为两大类:车外预定路径和非预定路径方式。下面对两种方式分别作介绍。
  1)车外预定路径导引方式
  是指在行驶的路径上设置导引用的信息媒介物,AGV通过检测出它的信息而得到导向的导引方式,如电磁导引、色带导引、磁带导引(又称磁性导引)等。
  这种导引方式是在地面上连续敷设一条带颜色的带子,在车辆的底部中央安装光源以及在两边安装相同的色标传感器(如欧姆龙产品E3X-DA□AN-S),它们同时检测色带反射回来的色度值,并将色度值转换成模拟量传送给AGV小车的中央控制系统--PLC。
  当AGV小车运行在正确的运行轨道上时,两放大器反馈给PLC模拟量的值相同,当AGV小车偏离轨道时,两放大器反馈给PLC的值便有差别,PLC根据两模拟量的差值便能判断出AGV小车偏离运行轨道的程度及方向,并通过控制运动控制器使AGV小车往正确的轨道运行。
  色带导引灵活性较好,地面路线设置简单易行,但对色带的污染和机械磨损十分敏感,对环境要求高,导引可靠性较差,精度较低。
  在预定路径导引方式中,还有电磁导引等。电磁导引是较为传统的导引方式之一,目前仍被许多系统采用,它是在AGV的行驶路径上埋设磁条,并在磁条上加载导引频率。磁导航传感器通过检测磁条上的磁场,便能判断出AGV小车的运行是否偏离轨道。
  磁导航传感器可安装在AGV小车的底部中央,距离磁条表面20-40mm,磁条宽度为30-50mm,厚度1mm。磁导航传感器内部每隔10mm排布一个采样点,共排布16个采样点,能够检测出磁条上方的磁场,每一个采样点都有一路对应输出。
  AGV运行时,磁导航传感器内部垂直于磁条上方的连续3-5个采样点会输出信号(如图中磁导航传感器上黄色条为检测到磁场信号的采样点,蓝色条为未能检测出磁场的采样点)。AGV小车的控制系统便能依靠16路通道中输出的3-5路信号,可以判断磁条相对于磁导航传感器的偏离位置,自动作出调整,确保沿磁条前行。
  拥有了运行路径后,还需要在每个工位及节点设置位置标签,使AGV小车在运行到特定位置时,能做出加速、减速、停车、拐弯等动作。如在每个工位敷设不同颜色的色条,当色标传感器检测出到颜色信号时,小车控制系统便能掌握小车运行的位置。色条作为位置标签,使用简单、方便,但对外部环境要求较高,容易产生误检测,可靠性差。
  AGV小车系统还可以使用RFID标签作为位置标签。RFID标签能存储大量的位置信息,并能多次读写,RFID标签的体积较小安装方便,抗干扰能力强。RFID读写器安装在AGV小车前方底部,对标签信息进行读取,并通过控制系统控制小车的下一步动作。
  比如欧姆龙公司拥有成熟的RFID系列产品。RFID主推产品有V680系列,包括有读写器V680-CA5D01-V2,能读写ID标签,可通过RS232/485接口与PLC通讯;天线V680-HS63,天线的读写距离为7.0~30.0mm,ID标签V680-D2KF67M,使用FRAM用来作为存储器,不需要电池,外壳材质为填充树脂,形状为40×40×4.5mm。
  电磁导引引线隐蔽,不易污染和破损,便于控制,对声光无干扰,制造成本低。但所有车外预定路径导引方式都存在共同缺点是路径难以更改扩展,对复杂路径的局限性大。与车外预定路径导引相反,非预定路径导引方式没有固定路径,其自主性更高。
  2)非预定路径导引方式
  AGV小车在运行中没有固定的路径,其通过激光、视觉、GPS等方式,掌握运行中所处的位置,并自主地决定行驶路径的导引方式。其中,较常用的是激光导引方式。
  激光导引是在AGV行驶路径的周围安装位置精确的激光反射板,AGV通过激光扫描器发射激光束,同时采集由反射板反射的激光束,来确定其当前的位置和航向,并通过连续的三角几何运算来实现AGV的导引。
  非预定路径导引方式优点是:AGV定位精确,地面无需其他定位设施,行驶路径灵活多变,适合多种现场环境。但它有一个很大的缺点是制造成本高,所以在本文不作重点讨论。
  3 AGV小车控制系统
  AGV小车系统除了上文提及的运行系统及导引系统外,还需要有中央控制系统,它能采集导引系统返回的位置信息,通过运算转换,反作用于运行系统,使AGV小车能做出需要的动作。
  PLC便可以作为AGV小车的中央控制器,它可以接收导引系统返回的模拟信号或开关量信号;它可以安装RS232、RS422/485接插件,通过串行通讯方式与RFID控制器通讯,采集ID标签的位置信息;它能输出控制伺服运行的脉冲信号或模拟量信号;PLC编程命令较简单,程序修改方便,而且还自带有AGV小车运行中需用到的PID等高级命令。
举报

更多回帖

发帖
×
20
完善资料,
赚取积分