对于用户来说,各种无线技术是如何控制智能家居的产品的他们不必不了解。就像很多人会开车,但是却不一定要懂怎么去修车一样。但是对于做智能家居产品的人来说,不得不面对这个问题。
简单而言,控制其实就是由控制端(手机或遥控器)发射出一个控制信号,然后被控制的家电接收信号,并对信号进行解码并作出响应。
这个控制信号我们称之为遥控协议,目前市面上的家电种类很多,又由于这些年由于智能家居的兴起,又有不少智能产品采用了新的控制方式,因而遥控协议也有很多种。总体而言,目前绝大多数的家电产品的遥控协议主要分为以下几种方式:WiFi、蓝牙、Zigbee、UWB超宽带、无线射频(RFID)、NFC、红外、Zwave等。
红外
红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,易实现等显著优点。可以说红外遥控是目前最普遍的遥控方式,绝大多数的空调、电视机、机顶盒、DVD、电风扇、投影仪基本采用的都是红外遥控。
基本原理:
红外遥控的发射电路是采用红外发光二极管来发出经过调制的红外光波;红外接收电路由红外接收二极管、三极管或硅光电池组成,它们将红外发射器发射的红外光转换为相应的电信号,再送后置放大器。
发射机一般由指令键(或操作杆)、指令编码系统、调制电路、驱动电路、发射电路等几部分组成。当按下指令键或推动操作杆时,指令编码电路产生所需的指令编码信号,指令编码信号对载波进行调制,再由驱动电路进行功率放大后由发射电路向外发射经调制定的指令编码信号。
接收电路一般由接收电路、放大电路、调制电路、指令译码电路、驱动电路、执行电路(机构)等几部分组成。接收电路将发射器发出的已调制的编码指令信号接收下来,并进行放大后送解调电路,解调电路将已调制的指令编码信号解调出来,即还原为编码信号。指令译码器将编码指令信号进行译码,最后由驱动电路来驱动执行电路实现各种指令的操作控制(机构)。
红外遥控的缺点:
红外遥控的缺点主要有四点:穿墙能力差、具有方向性、遥控距离短(10米左右,最远可达20米)、无法组网。
Zigbee:
ZigBee是基于IEEE802.15.4标准的低功耗局域网协议,可工作在2.4GHz(全球流行)、868MHz(欧洲流行)和915 MHz(美国流行)3个频段上,分别具有最高250kbit/s、20kbit/s和40kbit/s的传输速率,它的传输距离在10-75m的范围内。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。从网络容量来说,其可以扩展到65000的数量,绝对满足只智能家居产品的接入要求,速率有250K,对于无需大数据传输的家居设备来说绰绰有余。
目前新型的智能家居产品多数采用Zigbee进行控制和组网连接。
射频:
射频遥控的普及地位略低于红外,相对于红外而言,射频遥控的主要特点在于可穿墙、遥控无方向性、遥控距离远(最远可达50米)。虽然射频遥控可以采用的频段很多,但是目前主要使用的303Mhz、315 Mhz和433Mhz这几个频段。
常见的产品有汽车、灯光系统、窗帘、防盗器、防盗门等产品。
蓝牙:
蓝牙遥控经过多年的发展,功耗以及传输距离问题都得到了有效的解决,但是由于其无法进行复杂组网,因此目前采用蓝牙遥控的家电并不多,目前生活中常见使用蓝牙遥控的一般有:电视机、互联网盒子等。
Z-Wave:
Z-Wave是真正意义为智能家居而生的,Z-Wave是一种新兴的基于射频的、低成本、低功耗、高可靠、适于网络的短距离无线通信技术。工作频带为908.42MHz(美国)~868.42MHz(欧洲),采用FSK(BFSK/GFSK)调制方式,数据传输速率可达40 kbps,信号的有效覆盖范围在室内是30m,室外可超过100m,适合于窄带宽应用场合。随着通信距离的增大,设备的复杂度、功耗以及系统成本都在增加,相对于现有的各种无线通信技术,Z-Wave技术将是最低功耗和最低成本的技术,有力地推动着低速率无线个人区域网。Z-Wave技术设计用于住宅、照明商业控制以及状态读取应用,例如抄表、照明及家电控制、HVAC、接入控制、防盗及火灾检测等。Z-Wave可将任何独立的设备转换为智能网络设备,从而可以实现控制和无线监测。Z-Wave技术在最初设计时,就定位于智能家居无线控制领域。采用小数据格式传输,40kb/s的传输速率足以应对,早期甚至使用9.6kb/s的速率传输。与同类的其他无线技术相比,拥有相对较低的传输频率、相对较远的传输距离和一定的价格优势。
对于用户来说,各种无线技术是如何控制智能家居的产品的他们不必不了解。就像很多人会开车,但是却不一定要懂怎么去修车一样。但是对于做智能家居产品的人来说,不得不面对这个问题。
简单而言,控制其实就是由控制端(手机或遥控器)发射出一个控制信号,然后被控制的家电接收信号,并对信号进行解码并作出响应。
这个控制信号我们称之为遥控协议,目前市面上的家电种类很多,又由于这些年由于智能家居的兴起,又有不少智能产品采用了新的控制方式,因而遥控协议也有很多种。总体而言,目前绝大多数的家电产品的遥控协议主要分为以下几种方式:WiFi、蓝牙、Zigbee、UWB超宽带、无线射频(RFID)、NFC、红外、Zwave等。
红外
红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,易实现等显著优点。可以说红外遥控是目前最普遍的遥控方式,绝大多数的空调、电视机、机顶盒、DVD、电风扇、投影仪基本采用的都是红外遥控。
基本原理:
红外遥控的发射电路是采用红外发光二极管来发出经过调制的红外光波;红外接收电路由红外接收二极管、三极管或硅光电池组成,它们将红外发射器发射的红外光转换为相应的电信号,再送后置放大器。
发射机一般由指令键(或操作杆)、指令编码系统、调制电路、驱动电路、发射电路等几部分组成。当按下指令键或推动操作杆时,指令编码电路产生所需的指令编码信号,指令编码信号对载波进行调制,再由驱动电路进行功率放大后由发射电路向外发射经调制定的指令编码信号。
接收电路一般由接收电路、放大电路、调制电路、指令译码电路、驱动电路、执行电路(机构)等几部分组成。接收电路将发射器发出的已调制的编码指令信号接收下来,并进行放大后送解调电路,解调电路将已调制的指令编码信号解调出来,即还原为编码信号。指令译码器将编码指令信号进行译码,最后由驱动电路来驱动执行电路实现各种指令的操作控制(机构)。
红外遥控的缺点:
红外遥控的缺点主要有四点:穿墙能力差、具有方向性、遥控距离短(10米左右,最远可达20米)、无法组网。
Zigbee:
ZigBee是基于IEEE802.15.4标准的低功耗局域网协议,可工作在2.4GHz(全球流行)、868MHz(欧洲流行)和915 MHz(美国流行)3个频段上,分别具有最高250kbit/s、20kbit/s和40kbit/s的传输速率,它的传输距离在10-75m的范围内。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。从网络容量来说,其可以扩展到65000的数量,绝对满足只智能家居产品的接入要求,速率有250K,对于无需大数据传输的家居设备来说绰绰有余。
目前新型的智能家居产品多数采用Zigbee进行控制和组网连接。
射频:
射频遥控的普及地位略低于红外,相对于红外而言,射频遥控的主要特点在于可穿墙、遥控无方向性、遥控距离远(最远可达50米)。虽然射频遥控可以采用的频段很多,但是目前主要使用的303Mhz、315 Mhz和433Mhz这几个频段。
常见的产品有汽车、灯光系统、窗帘、防盗器、防盗门等产品。
蓝牙:
蓝牙遥控经过多年的发展,功耗以及传输距离问题都得到了有效的解决,但是由于其无法进行复杂组网,因此目前采用蓝牙遥控的家电并不多,目前生活中常见使用蓝牙遥控的一般有:电视机、互联网盒子等。
Z-Wave:
Z-Wave是真正意义为智能家居而生的,Z-Wave是一种新兴的基于射频的、低成本、低功耗、高可靠、适于网络的短距离无线通信技术。工作频带为908.42MHz(美国)~868.42MHz(欧洲),采用FSK(BFSK/GFSK)调制方式,数据传输速率可达40 kbps,信号的有效覆盖范围在室内是30m,室外可超过100m,适合于窄带宽应用场合。随着通信距离的增大,设备的复杂度、功耗以及系统成本都在增加,相对于现有的各种无线通信技术,Z-Wave技术将是最低功耗和最低成本的技术,有力地推动着低速率无线个人区域网。Z-Wave技术设计用于住宅、照明商业控制以及状态读取应用,例如抄表、照明及家电控制、HVAC、接入控制、防盗及火灾检测等。Z-Wave可将任何独立的设备转换为智能网络设备,从而可以实现控制和无线监测。Z-Wave技术在最初设计时,就定位于智能家居无线控制领域。采用小数据格式传输,40kb/s的传输速率足以应对,早期甚至使用9.6kb/s的速率传输。与同类的其他无线技术相比,拥有相对较低的传输频率、相对较远的传输距离和一定的价格优势。
举报