介绍了一种采用视频方式的点坐标测量方法。方案设计巧妙,测量方法稳定了可靠、精度高。该方法采用CCD摄像头拍摄屏幕画面获取光点信号,对摄像头输出的视频信号经过处理后,得到需要的一系列数字信号,然后在CPLD中完成数字逻辑功能,最终得到点的坐标。
测量一幅画面中某点的坐标,大多采用人工方法。但在有些工作条件下,这种方法给工作人员带来不便。本文介绍一种自动测量点坐标的实现方案。
1 系统总体设计方案
该方案测量对象是光点,在实验中用红色激光笔产生,使用加入红色滤光片的CCD摄像头。摄像头拍下屏幕的画面后,将其输出的视频信号同时送入同步分离电路和前置放大器。经过同步分离电路后,分别得到复合同步信号和场同步信号;经过前置放大电路放大、反相后,输入到钳位放大器。当有光点落在屏幕上时,视频信号的白电平处会产生尖脉冲。通过高速比较器可以截获这个尖脉冲信号(即光信号)。该方案预处理电路结构见图1。
与图2类似,场同步信号与光信号分别作为RS触发器的R、S输入信号,输出信号Q与复合同步信号以及延迟后的场同步信号经过三输入与门后,输出的脉冲作为垂直计数器的计数脉冲。光脉冲到来时,垂直计数器停止计数并将其中的内容写入垂直锁存器。场同步信号同时也作为垂直计数器的清零信号,在下一场开始前将其清零,进入新一轮垂直计数状态。该方案场计数器结构见图3。
水平锁存器和垂直锁存器中的数值即为光点的坐标,这样就测量出图像中某光点的位置。
2 系统方案实现
2.1 同步分离电路
在电视系统中,为了能正确地重现图像,要求收端与发端同步扫描。只要扫描频率相同、起始相位相同,收端就可以重现发端图像并认为是同步的。当收端、发端的频率、相位不同时,图像将被破坏,产生畸变,甚至无法重视,因此在图像信号中加入了同步脉冲。在发送端,每当扫完一行图像时,加入一个行同步脉冲,每扫完一场图像时加入一个场同步脉冲。它们与图像信号一起被发送出去。在接收端,使行扫描锯齿波电流只有当行同步脉冲到达进才开始逆程期,而场扫描齿波电流也只有在场同步脉冲到达时才开始逆程期。这样就保证了同步。为了使扫描逆程光栅不显示(消隐),还需要加入行、场消隐脉冲,这时的图像信号电平成为消隐电平。摄像头输出的是将图像信号,同步信号,行、场消隐信号这三种信号组合起来形成的黑白全电视信号。我国电视规定:行频为15625Hz,行同步脉宽为4.7μs;场频为50Hz,场同步脉宽为2.5×1/15625=160μs。
在该方案中,使用专用芯片LM1881将行、场同步脉冲分离出来。LM1881是正极性图像信号输入、TTL电平输出芯片,从而简化了电路。图4是LM1881的连接图以及工作波形示意图。正极性图像信号从2脚输入,在1脚和3脚分别输出复合同步信号和场同步信号。5脚输出后沿脉冲信号,作为钳位放大器的钳位脉冲输入。7脚输出奇偶场指示信号。
反极性图像信号加到解集成电路AN5612的1脚,在其内部进行视频放大,增益由18脚外接对比度电位器R1控制。频率特性由R3、C7组成的网络进行高频补偿。4脚的外接膏药度电位器R5调节黑电平的高低。视频信号在加入AN5612之前由于通过耦合电容失去了直流成分,因此,视频信号的消隐电平而改变。为了克服这个缺点,可采用直流耦合放大,但由于一般的直流耦合放大容易产生温漂,致使黑电平难以稳定。常用的办法是采用钳位电路,将复合同步脉冲延迟至行消隐信号后肩,从而把亮度信号的消隐电平钳位于给定的直流电平上。LM1881的5脚输出的信号即为所需要的钳位脉冲。这部分电路见图5.AN5612的7脚输出R基色信号,作为比较器LM361的一路输入。
比较器选用LM371,最高速度达到20ns,AN5612的7脚输出的R基色信号作为LM361的一路输入信号input1;另一路输入input2为参考,通过试验,其值取为3.1V。LM361有两路互补的TTL电平输出output1和output2,它们与输入之间的关系可以表示如下:
LM361的两路输出分别送入CPLD(复杂的可编程逻辑器件)。
2.4 数字逻辑电路
该方案的数字电路部分主要由CPLD构成,实现行计数和场计数功能。CPLD选用ALTERA公司MAX7000S系列的EPM7128S,支持在系统可编程(In System Programming)。ISP技术及其器件是20世纪90年代迅速发展起来的一种新技术与新器件。它使设计者能在产品设计、制造过程中对产品中的器件、电路板乃至整个电子系统的逻辑和功能随时进行组态或重组。采用这种器件开发的数字系统,升级与改进是极其方便的。
2.4.1 行计数
行计数的功能框图可参见图2,图6是实现行计数的波形示意图。复合同步信号延迟10.5μs后至行消隐电平后肩。延迟至消隐电平的后肩是为了避免计数器在行逆程期间计数,减小误差。行同步脉宽为4.7μs,而行消隐电平有5.8μμs的后肩,故延迟时间定为10.5μs。在行消隐电平后肩时刻,三输入与非门开始输出15MHz的计数脉冲,行计数器开始计数。当有光脉冲去到时(即LM361的9脚输出低电平),RS触发器的输出Q跳变为“0”,故三输入与门输出“0”,计数停止计数;同时光脉冲触发锁存器,存储计数器中的数值,至此就获得了光点的行坐标。下一行同步脉冲到来时,会将计数器清零,开始新一行的点坐标测量。
我国电视规定一行的周期为64μs。除去行消隐脉冲,这样在15MHz的计数脉冲下,一行最多可计算的点数为(64-12)×15=780。也可以根据对精度要求的不同,选用不同的时钟。
2.4.2 场计数
场计数实现的思想类似于行计数,只不过将复合同步信号替代为场同步信号;而场计数脉冲为复合同步脉冲,而不是15MHz脉冲信号。同样,为了避免场计数器在场逆程期间计数,将场同步脉冲宽度延迟到1600μs。光信号到来时,计数器停止计数,并将数值入场锁存器。下一场同步脉冲到来时,将计数器清零,开始新一场的点坐标测量。
由于摄像头采用隔行扫描方式,两场构成一帧画面,奇数场扫奇数行,偶数场扫偶数行,所以此时得到的场坐标与实际值之间有较大误差。为了提高精度,需要确定当前扫描的是奇数场还是偶数场。假设场计数器中的值为n,那么若LM1881的7脚输出0,表明当前扫描的是偶数场,光点实际应在第2n行;若7脚输出1,表明扫描的是奇数场,光点实际应在第2n-1行。
根据以上所述的行、场计数逻辑关系,可以用硬件描述语言(HDL)设计数字电路。在综合、仿真后,通过下载线将程序写入CPLD中,通过JTAG口可以方便地调试程序。
2.4.3 误差校正
由于光在空气中是发散的,所以实际上摄像头拍摄到的不是光点,而是光斑。在本方案中,电路测得的坐标实际为光斑左上解某点的坐标,而不是光斑中心点的坐标,故还需要对此值进行校正,才能得到光斑中心点较准确的坐标位置。校正值应根据实际情况下光斑的大小来确定。
介绍了一种采用视频方式的点坐标测量方法。方案设计巧妙,测量方法稳定了可靠、精度高。该方法采用CCD摄像头拍摄屏幕画面获取光点信号,对摄像头输出的视频信号经过处理后,得到需要的一系列数字信号,然后在CPLD中完成数字逻辑功能,最终得到点的坐标。
测量一幅画面中某点的坐标,大多采用人工方法。但在有些工作条件下,这种方法给工作人员带来不便。本文介绍一种自动测量点坐标的实现方案。
1 系统总体设计方案
该方案测量对象是光点,在实验中用红色激光笔产生,使用加入红色滤光片的CCD摄像头。摄像头拍下屏幕的画面后,将其输出的视频信号同时送入同步分离电路和前置放大器。经过同步分离电路后,分别得到复合同步信号和场同步信号;经过前置放大电路放大、反相后,输入到钳位放大器。当有光点落在屏幕上时,视频信号的白电平处会产生尖脉冲。通过高速比较器可以截获这个尖脉冲信号(即光信号)。该方案预处理电路结构见图1。
与图2类似,场同步信号与光信号分别作为RS触发器的R、S输入信号,输出信号Q与复合同步信号以及延迟后的场同步信号经过三输入与门后,输出的脉冲作为垂直计数器的计数脉冲。光脉冲到来时,垂直计数器停止计数并将其中的内容写入垂直锁存器。场同步信号同时也作为垂直计数器的清零信号,在下一场开始前将其清零,进入新一轮垂直计数状态。该方案场计数器结构见图3。
水平锁存器和垂直锁存器中的数值即为光点的坐标,这样就测量出图像中某光点的位置。
2 系统方案实现
2.1 同步分离电路
在电视系统中,为了能正确地重现图像,要求收端与发端同步扫描。只要扫描频率相同、起始相位相同,收端就可以重现发端图像并认为是同步的。当收端、发端的频率、相位不同时,图像将被破坏,产生畸变,甚至无法重视,因此在图像信号中加入了同步脉冲。在发送端,每当扫完一行图像时,加入一个行同步脉冲,每扫完一场图像时加入一个场同步脉冲。它们与图像信号一起被发送出去。在接收端,使行扫描锯齿波电流只有当行同步脉冲到达进才开始逆程期,而场扫描齿波电流也只有在场同步脉冲到达时才开始逆程期。这样就保证了同步。为了使扫描逆程光栅不显示(消隐),还需要加入行、场消隐脉冲,这时的图像信号电平成为消隐电平。摄像头输出的是将图像信号,同步信号,行、场消隐信号这三种信号组合起来形成的黑白全电视信号。我国电视规定:行频为15625Hz,行同步脉宽为4.7μs;场频为50Hz,场同步脉宽为2.5×1/15625=160μs。
在该方案中,使用专用芯片LM1881将行、场同步脉冲分离出来。LM1881是正极性图像信号输入、TTL电平输出芯片,从而简化了电路。图4是LM1881的连接图以及工作波形示意图。正极性图像信号从2脚输入,在1脚和3脚分别输出复合同步信号和场同步信号。5脚输出后沿脉冲信号,作为钳位放大器的钳位脉冲输入。7脚输出奇偶场指示信号。
反极性图像信号加到解集成电路AN5612的1脚,在其内部进行视频放大,增益由18脚外接对比度电位器R1控制。频率特性由R3、C7组成的网络进行高频补偿。4脚的外接膏药度电位器R5调节黑电平的高低。视频信号在加入AN5612之前由于通过耦合电容失去了直流成分,因此,视频信号的消隐电平而改变。为了克服这个缺点,可采用直流耦合放大,但由于一般的直流耦合放大容易产生温漂,致使黑电平难以稳定。常用的办法是采用钳位电路,将复合同步脉冲延迟至行消隐信号后肩,从而把亮度信号的消隐电平钳位于给定的直流电平上。LM1881的5脚输出的信号即为所需要的钳位脉冲。这部分电路见图5.AN5612的7脚输出R基色信号,作为比较器LM361的一路输入。
比较器选用LM371,最高速度达到20ns,AN5612的7脚输出的R基色信号作为LM361的一路输入信号input1;另一路输入input2为参考,通过试验,其值取为3.1V。LM361有两路互补的TTL电平输出output1和output2,它们与输入之间的关系可以表示如下:
LM361的两路输出分别送入CPLD(复杂的可编程逻辑器件)。
2.4 数字逻辑电路
该方案的数字电路部分主要由CPLD构成,实现行计数和场计数功能。CPLD选用ALTERA公司MAX7000S系列的EPM7128S,支持在系统可编程(In System Programming)。ISP技术及其器件是20世纪90年代迅速发展起来的一种新技术与新器件。它使设计者能在产品设计、制造过程中对产品中的器件、电路板乃至整个电子系统的逻辑和功能随时进行组态或重组。采用这种器件开发的数字系统,升级与改进是极其方便的。
2.4.1 行计数
行计数的功能框图可参见图2,图6是实现行计数的波形示意图。复合同步信号延迟10.5μs后至行消隐电平后肩。延迟至消隐电平的后肩是为了避免计数器在行逆程期间计数,减小误差。行同步脉宽为4.7μs,而行消隐电平有5.8μμs的后肩,故延迟时间定为10.5μs。在行消隐电平后肩时刻,三输入与非门开始输出15MHz的计数脉冲,行计数器开始计数。当有光脉冲去到时(即LM361的9脚输出低电平),RS触发器的输出Q跳变为“0”,故三输入与门输出“0”,计数停止计数;同时光脉冲触发锁存器,存储计数器中的数值,至此就获得了光点的行坐标。下一行同步脉冲到来时,会将计数器清零,开始新一行的点坐标测量。
我国电视规定一行的周期为64μs。除去行消隐脉冲,这样在15MHz的计数脉冲下,一行最多可计算的点数为(64-12)×15=780。也可以根据对精度要求的不同,选用不同的时钟。
2.4.2 场计数
场计数实现的思想类似于行计数,只不过将复合同步信号替代为场同步信号;而场计数脉冲为复合同步脉冲,而不是15MHz脉冲信号。同样,为了避免场计数器在场逆程期间计数,将场同步脉冲宽度延迟到1600μs。光信号到来时,计数器停止计数,并将数值入场锁存器。下一场同步脉冲到来时,将计数器清零,开始新一场的点坐标测量。
由于摄像头采用隔行扫描方式,两场构成一帧画面,奇数场扫奇数行,偶数场扫偶数行,所以此时得到的场坐标与实际值之间有较大误差。为了提高精度,需要确定当前扫描的是奇数场还是偶数场。假设场计数器中的值为n,那么若LM1881的7脚输出0,表明当前扫描的是偶数场,光点实际应在第2n行;若7脚输出1,表明扫描的是奇数场,光点实际应在第2n-1行。
根据以上所述的行、场计数逻辑关系,可以用硬件描述语言(HDL)设计数字电路。在综合、仿真后,通过下载线将程序写入CPLD中,通过JTAG口可以方便地调试程序。
2.4.3 误差校正
由于光在空气中是发散的,所以实际上摄像头拍摄到的不是光点,而是光斑。在本方案中,电路测得的坐标实际为光斑左上解某点的坐标,而不是光斑中心点的坐标,故还需要对此值进行校正,才能得到光斑中心点较准确的坐标位置。校正值应根据实际情况下光斑的大小来确定。
举报