电力电子技术
直播中

杨玲

7年用户 109经验值
私信 关注
[问答]

请问如何处理接地和去耦的重要布局问题?

如何处理接地和去耦的重要布局问题?


回帖(1)

李红霞

2021-3-18 14:27:10
  如何应对寄生阻抗和接地电流?……面对这些问题,我们将进行一系列的详细讲解,今天主要讲讲接地。
  图 1 显示信号源与负载之间隔开了一段距离,接地 G1 和 G2 通过一个回路连接起来。理想情况下,G1 和 G2 之间的接地阻抗为 0,因此接地回路电流不会在 G1 和 G2 之间产生一个差分电压。
  
  图 1. 在电路中的任何一点,电流的算术和为 0,或者说流出去的必会流回来。若 G1 和 G2 之间的阻抗为 0,则 G1 和 G2 之间无差分电压。
  遗憾的是,让回流路径保持零阻抗是不可能的,接地回路阻抗在接地电流作用下,会在 G1 和 G2 之间产生一个误差电压ΔV。
  
  图 2. 接地阻抗中流动的信号和 / 或外部电流产生误差电压ΔV。
  G1 和 G2 之间的连接不仅有电阻,还有电感。出于本文目的,这里忽略杂散电容的影响。但在该系列的下一篇文章中,您会了解到电源层和接地层之间的电容是如何帮助高频去耦的。
  无焊试验板,制成的电路看起来可能类似于图 3 所示的电路
  
  图 3. 采用无焊试验板的电路
  G1 和 G2 之间流动的电流可以是信号电流或其他电路引起的外部电流。
  您可以看到图 3 试验板中的总线阻抗如何既有阻性元件又有感性元件。接地总线阻抗是否会影响电路运行,不仅取决于电路的直流精度要求,而且取决于模拟信号频率和电路中数字开关元件产生的频率分量。
  如果最大信号频率为 1 MHz,并且电路仅需要几毫安(mA)电流,那么接地总线阻抗可能不是问题。然而,如果信号为 100 MHz,并且电路驱动一个需要 100 mA 的负载,那么阻抗很可能会成为问题。
  大部分情况下,由于“母线(buss wire)”在大多数逻辑转换等效频率下具有阻抗,将其用作数字接地回路是不能接受的。
  举个例子:
  例如,#22 标准导线具有约 20 nH/ 英寸的电感和 1 mΩ/ 英寸的电阻。由逻辑信号转换产生的压摆率为 10 mA/ns 的瞬态电流,在此频率下流经 1 英寸的该导线,将形成 200 mV 的无用压降:
  
  对于具有 2 V 峰峰值范围的信号,此压降会转化为约 10%的误差(大约 3.5 位精度)。即使在全数字电路中,该误差也会大幅降低逻辑噪声裕量。
  对于低频信号,该 1 mΩ/ 英寸电阻也会产生一个误差。例如,100 mA 电流流过 1 英寸的#22 标准导线时,产生的压降约为:
  
  一个 2 V 峰峰值范围的信号数字化到 16 位精度时,其 1 LSB = 2 V/2 16= 30.5 μV。因此,导线电阻引起的 100 μV 误差约等于 16 位精度水平的 3.3 LSB 误差。
  图 4 显示了模拟接地回路中流动的高噪声数字电流如何在输入模拟电路的电压 V IN 中产生误差。将模拟电路地和数字电路地连接在同一点(如下方的正确电路图所示),可以在某种程度上缓解上述问题。
  
  图 4. 模拟电路和数字电路使用单点接地可降低高噪声数字电路引起的误差效应。
  接地层在当今系统中必不可少
  在无焊试验板中,甚至在图 3 所示的采用总线结构的电路板中,能够用来降低接地阻抗的手段并不多。无焊试验板在工业系统设计中是非常罕见的。实接地层是提供低阻抗回流路径的工业标准方法。生产用印刷电路板一般有一层或多层专门用于接地。这种方法相当适合最终生产,但在原型系统中较难实现。
  图 5 显示了一个包含模拟电路、数字电路以及一个混合信号器件(模数转换器或数模转换器等)并针对 PCB 的典型接地安排。
  
  图 5. 针对混合信号系统 PCB 的良好接地解决方案。
  模拟电路和数字电路在物理上相隔离,分别位于各自的接地层上。混合信号器件横跨两个接地层,系统单点或星形接地是两个接地层的连接点。
  您应当知道,关于模拟接地和数字接地,还有其他已被证明有效的接地原理。然而,这些原理全都基于同样的概念——分析模拟和数字电流路径,然后采取措施以最大限度地减少它们之间的相互影响。
  希望大家已经了解到接地对于你们当前和未来设计的重要性。
举报

更多回帖

发帖
×
20
完善资料,
赚取积分