电池均衡
由于第16串和第17串电池由分立电路监控,而下部15个电池由BQ76940监控,因此必须考虑对电池均衡的影响。
图5显示了主要的电流路径。红色表示通用运算放大器的电源路径,绿色表示第17串电池的电压采样路径,灰色表示第16串电池的感测路径。通用运算放大器的供电电流由整个电池组提供并流回参考地,因此是对整个电池组放电,并不会导致不均衡。第17串电池的电压采样路径也是从整个电池组流回参考地,因此也不会导致不均衡。但是第16串电池的电压采样路径从低16串电池流回参考地,这将导致第17串和低16串电池之间出现电压不均衡。这种不均衡只有在检测第16串电池电压时才会出现。
若要减少不均衡的影响,可以在不检测第16串电池的时候关闭Q21,并在计算不均衡影响时考虑Q21控制电路电流。
根据此处的分析,并假设电压采样周期为250ms,则此参考设计的不平衡电流应小于0.1 µA。
图5:分立电路电流路径图
低系统待机消耗
在先前撰写的文章“踏板动力解决方案:为电动自行车和电动摩托车提供耐久性更好的13S、48V锂离子电池组,我解释了如何用LM5164和系统级设计来降低待机模式下的系统级电流消耗。现在,我想简单地讨论一下如何降低待机模式下分立电路的电流消耗。待机模式下既不充电也不放电。电池电压感应起到保护作用,通常可以通过增加空闲时间来降低频率。为了减少待机模式下的功耗,您可以在不需要感测电压的情况下关闭电路。
图2中的解决方案使用P通道MOSFET Q20将电源切换到LM2904B,并由微控制器控制。为了进一步降低电流,我增加了Q22和Q21,用来切断电池电压传感线路,从而节省更多的能量。假设电压感应周期为250 ms,空闲时间为250 ms,则待机时的平均电流消耗将相当低。图2所示的解决方案中的典型电流小于1 µA。
总的来说,该参考设计提供了一个具有成本竞争力的电池组解决方案,覆盖高达17S的电池,是电动摩托车的理想选择。该设计通过以下方式实现更长的运行时间:
提高电池电压采样精度。
减少待机模式下的电流消耗。
消除不均衡影响。
这种设计也适用于需要16S/48-V磷酸锂离子电池组的电信备用电池组。
电池均衡
由于第16串和第17串电池由分立电路监控,而下部15个电池由BQ76940监控,因此必须考虑对电池均衡的影响。
图5显示了主要的电流路径。红色表示通用运算放大器的电源路径,绿色表示第17串电池的电压采样路径,灰色表示第16串电池的感测路径。通用运算放大器的供电电流由整个电池组提供并流回参考地,因此是对整个电池组放电,并不会导致不均衡。第17串电池的电压采样路径也是从整个电池组流回参考地,因此也不会导致不均衡。但是第16串电池的电压采样路径从低16串电池流回参考地,这将导致第17串和低16串电池之间出现电压不均衡。这种不均衡只有在检测第16串电池电压时才会出现。
若要减少不均衡的影响,可以在不检测第16串电池的时候关闭Q21,并在计算不均衡影响时考虑Q21控制电路电流。
根据此处的分析,并假设电压采样周期为250ms,则此参考设计的不平衡电流应小于0.1 µA。
图5:分立电路电流路径图
低系统待机消耗
在先前撰写的文章“踏板动力解决方案:为电动自行车和电动摩托车提供耐久性更好的13S、48V锂离子电池组,我解释了如何用LM5164和系统级设计来降低待机模式下的系统级电流消耗。现在,我想简单地讨论一下如何降低待机模式下分立电路的电流消耗。待机模式下既不充电也不放电。电池电压感应起到保护作用,通常可以通过增加空闲时间来降低频率。为了减少待机模式下的功耗,您可以在不需要感测电压的情况下关闭电路。
图2中的解决方案使用P通道MOSFET Q20将电源切换到LM2904B,并由微控制器控制。为了进一步降低电流,我增加了Q22和Q21,用来切断电池电压传感线路,从而节省更多的能量。假设电压感应周期为250 ms,空闲时间为250 ms,则待机时的平均电流消耗将相当低。图2所示的解决方案中的典型电流小于1 µA。
总的来说,该参考设计提供了一个具有成本竞争力的电池组解决方案,覆盖高达17S的电池,是电动摩托车的理想选择。该设计通过以下方式实现更长的运行时间:
提高电池电压采样精度。
减少待机模式下的电流消耗。
消除不均衡影响。
这种设计也适用于需要16S/48-V磷酸锂离子电池组的电信备用电池组。
举报