传统隔离
图1展示了PROFIBUS DP标准文档中描述的传统隔离总线节点设计。该电路使用三个光耦合器将PROFIBUS收发器与其他以大地为接地参考的控制器电路分开。

图1. 传统的PROFIBUS DP节点
瑞萨电子将GMR隔离器与PROFIBUS RS-485收发器集成,推出了ISL32740型号收发器。该器件显著减少了元件数量并降低了功耗,同时提高了对共模电压和线路噪声的容差。此外,收发器可靠性也显著提高。由于GMR隔离器中没有磨损机制,因此该器件在应用的整个生命周期都无需更换。图2展示了使用ISL32740的典型DP节点设计。

图2. 使用ISL32740的新式PROFIBUS DP节点
合规和认证
PROFIBUS国际标准对收发器差分输出电压进行了限制,禁止使用许多目前市场上的收发器芯片。在空载条件下,最大差分总线电压限制在7VPP。而对于最大负载,最小值限制为4VPP。
许多具有高输出驱动的RS-485收发器能够满足4VPP的最小值,但因为生产差分电压高达8.5V的驱动器比较容易,往往会超过7VPP的最大值。但在这里,并不是电压越高越好。
因此需要注意,如果未使用符合4VPP至7VPP限制的收发器,将导致任何申请PROFIBUS认证的产品无法通过认证。另一个申请会遇到的问题是收发器差分电压要求在最大指定电源电压下测量,对于5V收发器来说,通常为5.5V。PROFIBUS测试实验室在合规性测试中会使用这一最恶劣的条件。
总线信号规则
RS-485标准明确地将收发器总线端子A和B分别定义为反相和非反相端子。然而,所有收发器制造商都使用相反的规则,其端子A是非反相,端子B是反相端子。
这个现象一直延续至今。PROFIBUS会按照EIA-485标准,将非反相端子分配给B线,将反相端子分配给A线。但是,全世界的收发器制造商仍在使用相反的信号端子定义。
指定和实际应用的信号规则不匹配一直困扰着网络研发人员。这个问题的解决方案其实很简单,迄今为止安装的5000万个PROFIBUS节点的收发器A为非反相,B为反相端,遵循这一信号规则就可以确保研发人员的设计与未来将会安装的5000万个节点是兼容的。
传统隔离
图1展示了PROFIBUS DP标准文档中描述的传统隔离总线节点设计。该电路使用三个光耦合器将PROFIBUS收发器与其他以大地为接地参考的控制器电路分开。

图1. 传统的PROFIBUS DP节点
瑞萨电子将GMR隔离器与PROFIBUS RS-485收发器集成,推出了ISL32740型号收发器。该器件显著减少了元件数量并降低了功耗,同时提高了对共模电压和线路噪声的容差。此外,收发器可靠性也显著提高。由于GMR隔离器中没有磨损机制,因此该器件在应用的整个生命周期都无需更换。图2展示了使用ISL32740的典型DP节点设计。

图2. 使用ISL32740的新式PROFIBUS DP节点
合规和认证
PROFIBUS国际标准对收发器差分输出电压进行了限制,禁止使用许多目前市场上的收发器芯片。在空载条件下,最大差分总线电压限制在7VPP。而对于最大负载,最小值限制为4VPP。
许多具有高输出驱动的RS-485收发器能够满足4VPP的最小值,但因为生产差分电压高达8.5V的驱动器比较容易,往往会超过7VPP的最大值。但在这里,并不是电压越高越好。
因此需要注意,如果未使用符合4VPP至7VPP限制的收发器,将导致任何申请PROFIBUS认证的产品无法通过认证。另一个申请会遇到的问题是收发器差分电压要求在最大指定电源电压下测量,对于5V收发器来说,通常为5.5V。PROFIBUS测试实验室在合规性测试中会使用这一最恶劣的条件。
总线信号规则
RS-485标准明确地将收发器总线端子A和B分别定义为反相和非反相端子。然而,所有收发器制造商都使用相反的规则,其端子A是非反相,端子B是反相端子。
这个现象一直延续至今。PROFIBUS会按照EIA-485标准,将非反相端子分配给B线,将反相端子分配给A线。但是,全世界的收发器制造商仍在使用相反的信号端子定义。
指定和实际应用的信号规则不匹配一直困扰着网络研发人员。这个问题的解决方案其实很简单,迄今为止安装的5000万个PROFIBUS节点的收发器A为非反相,B为反相端,遵循这一信号规则就可以确保研发人员的设计与未来将会安装的5000万个节点是兼容的。
举报