选择合适检测电阻的考虑因素
电阻温漂
AD7403的输出为16位数值,因此限制电流测量潜在精度不是受限于ADC转换,而是受限于电压读数本身。电阻随温度的漂移取决于电阻元件使用的材质、功率额定值和元件的实际尺寸。
由镍、铜、锰特殊合金制成的阻性元件的电阻温漂曲线呈抛物线形状,如图2所示。对于电流检测应用,这些合金是精度最高的材料。图2还显示了Bourns CSS4J-4026R型电阻温漂的上限和下限,对应于50 ppm/°C的温度系数。此差距是由电阻的铜引脚引起的,铜具有很高的TCR (4000 ppm/°C),导致温漂增加。
Bourns CST0612系列是由特殊合金制成的1 W、4引脚电阻。其尺寸为3.2 mm × 1.65 mm,TCR为±100 ppm/°C,Bourns CST0612型和CSS4J-4026R型的TCR差异可以用铜含量相对于阻性元件的比例来解释。增加低热阻的铜有助于元件吸收高功率而不会过热。
本例展示了元件尺寸、功率额定值和阻值温漂的取舍关系。
图2. Bourns CSS4J-4026R型电流检测电阻的抛物线形TCR曲线
电阻温漂计算
让我们以Bourns产品型号CSS4J-4026R-L500F为例,计算其在全功率和70°C环境温度下的电阻温漂。CSS4J-4026R-L500F是一款0.5mΩ (±1%)检测电阻,额定功率为5 W,最高环境温度为130°C。在170°C时,其额定功率从100%减额至0 W。因此,该元件的热阻为8°C/W。在全功率和70°C环境温度下,预期元件的表面温度会达到110°C (70°C + 8×5°C)。110°C时的阻值温漂可以从图3得知,25°C时的标称值为+0.45%。绝对容差为±1%,因此电流测量精度最大值为+1.45%。
过载
电机驱动偶尔会发生短路,电流检测电阻必须能够承受短时过载而不受损。以Bourns CST0612型电流检测电阻为例,根据Bourns网站上的材料数据表,可以算出此元件的质量为0.0132 g。另外,也可以根据尺寸及铜合金的密度(8.4 g/cm3)来计算。温升速率可计算如下:
其中,P为功率(W),m为元件质量(g),C为合金的比热容量。1 mΩ的电阻过载50 A时,会产生每秒462°C的温度压摆率。假设稳态温度为50°C,则短路周期的宽度不能超过0.22秒。通过在电路板上镀铜以增加整体质量,可以延长此宽度。
在相同过载下,使用较厚、较大的元件时,例如质量为0.371 g的CSS4J-4026型电阻,温度压摆率将是每秒16.5°C。假设元件表面温度为100°C,则它承受该能量的最长时间将是4秒,然后表面温度才会达到最大允许值170°C。
合适的阻值
电阻提供的AD7403满量程输入为±250 mV。表2中的矩阵列出了最大电流时Bourns高功率电流检测电阻上的压降。对于较低电压,设计人员可通过调整比例因子来补偿。
表2. 最大电流和Bourns电流检测电阻上的压降
根据IEC60747-17,具有增强隔离性能的数字隔离器的最低寿命应为37.5年。虽然更传统的光耦合器技术没有此类指标,但未来数字隔离系统会对设计人员提供更多保障。利用特殊合金制成的电流检测电阻具有很低的电阻温漂,其产生的输出电压可以由隔离式Σ-Δ调制器(例如采用ADI iCoupler®技术的器件)用一个可调整比例因子来读取。电流测量的精度取决于电阻温度,后者又取决于功率相对于额定功率的比例以及环境温度。
选择合适检测电阻的考虑因素
电阻温漂
AD7403的输出为16位数值,因此限制电流测量潜在精度不是受限于ADC转换,而是受限于电压读数本身。电阻随温度的漂移取决于电阻元件使用的材质、功率额定值和元件的实际尺寸。
由镍、铜、锰特殊合金制成的阻性元件的电阻温漂曲线呈抛物线形状,如图2所示。对于电流检测应用,这些合金是精度最高的材料。图2还显示了Bourns CSS4J-4026R型电阻温漂的上限和下限,对应于50 ppm/°C的温度系数。此差距是由电阻的铜引脚引起的,铜具有很高的TCR (4000 ppm/°C),导致温漂增加。
Bourns CST0612系列是由特殊合金制成的1 W、4引脚电阻。其尺寸为3.2 mm × 1.65 mm,TCR为±100 ppm/°C,Bourns CST0612型和CSS4J-4026R型的TCR差异可以用铜含量相对于阻性元件的比例来解释。增加低热阻的铜有助于元件吸收高功率而不会过热。
本例展示了元件尺寸、功率额定值和阻值温漂的取舍关系。
图2. Bourns CSS4J-4026R型电流检测电阻的抛物线形TCR曲线
电阻温漂计算
让我们以Bourns产品型号CSS4J-4026R-L500F为例,计算其在全功率和70°C环境温度下的电阻温漂。CSS4J-4026R-L500F是一款0.5mΩ (±1%)检测电阻,额定功率为5 W,最高环境温度为130°C。在170°C时,其额定功率从100%减额至0 W。因此,该元件的热阻为8°C/W。在全功率和70°C环境温度下,预期元件的表面温度会达到110°C (70°C + 8×5°C)。110°C时的阻值温漂可以从图3得知,25°C时的标称值为+0.45%。绝对容差为±1%,因此电流测量精度最大值为+1.45%。
过载
电机驱动偶尔会发生短路,电流检测电阻必须能够承受短时过载而不受损。以Bourns CST0612型电流检测电阻为例,根据Bourns网站上的材料数据表,可以算出此元件的质量为0.0132 g。另外,也可以根据尺寸及铜合金的密度(8.4 g/cm3)来计算。温升速率可计算如下:
其中,P为功率(W),m为元件质量(g),C为合金的比热容量。1 mΩ的电阻过载50 A时,会产生每秒462°C的温度压摆率。假设稳态温度为50°C,则短路周期的宽度不能超过0.22秒。通过在电路板上镀铜以增加整体质量,可以延长此宽度。
在相同过载下,使用较厚、较大的元件时,例如质量为0.371 g的CSS4J-4026型电阻,温度压摆率将是每秒16.5°C。假设元件表面温度为100°C,则它承受该能量的最长时间将是4秒,然后表面温度才会达到最大允许值170°C。
合适的阻值
电阻提供的AD7403满量程输入为±250 mV。表2中的矩阵列出了最大电流时Bourns高功率电流检测电阻上的压降。对于较低电压,设计人员可通过调整比例因子来补偿。
表2. 最大电流和Bourns电流检测电阻上的压降
根据IEC60747-17,具有增强隔离性能的数字隔离器的最低寿命应为37.5年。虽然更传统的光耦合器技术没有此类指标,但未来数字隔离系统会对设计人员提供更多保障。利用特殊合金制成的电流检测电阻具有很低的电阻温漂,其产生的输出电压可以由隔离式Σ-Δ调制器(例如采用ADI iCoupler®技术的器件)用一个可调整比例因子来读取。电流测量的精度取决于电阻温度,后者又取决于功率相对于额定功率的比例以及环境温度。
举报