1. 高频信号布线时要注意哪些问题?
信号线的阻抗匹配;与其他信号线的空间隔离;对于数字高频信号,差分线效果会更好。
2. 在布板时,如果线密,孔就可能要多,当然就会影响板子的电气性能,怎样提高板子的电气性能?
对于低频信号,过孔不要紧,高频信号尽量减少过孔。如果线多可以考虑多层板。
3. 是不是板子上加的去耦电容越多越好?
去耦电容需要在合适的位置加合适的值。例如,在模拟器件的供电端口就需要加,并且需要用不同的电容值去滤除不同频率的杂散信号。
4. 一个好的板子它的标准是什么?
布局合理、电源线功率冗余度足够、高频阻抗、低频走线简洁。
5. 通孔和盲孔对信号的差异影响有多大?应用的原则是什么?
采用盲孔或埋孔是提高多层板密度、减少层数和板面尺寸的有效方法,并大大减少了镀覆通孔的数量。
但相比较而言,通孔在工艺上好实现,成本较低,所以一般设计中都使用通孔。
6. 在涉及模拟数字混合系统的时候,有人建议电层分割,地平面采取整片敷铜,也有人建议电地层都分割,不同的地在电源端点接,但是这样对信号的回流路径就远了,具体应用时应如何选择合适的方法?
如果有高频》20MHz信号线,并且长度和数量都比较多,那么需要至少两层给这个模拟高频信号。一层信号线,一层大面积地,并且信号线层需要打足够的过孔到地。这样的目的是:
对于模拟信号,这提供了一个完整的传输介质和阻抗匹配;
地平面把模拟信号和其他数字信号进行隔离;
地回路足够小,因为你打了很多过孔,地又是一个大平面。
7. 在电路板中,信号输入插件在PCB最左边沿,MCU在靠右边,那么在布局时是把稳压电源芯片放置在源靠近接插件(电源 IC输出5V经过一段比较长的路径才到达MCU),还是把电源IC放置到中间偏右(电源IC的输出5V的线到达MCU就比较短,但输入电源段线就经过比较长一段PCB板)?或是有更好的布局?
首先信号输入插件是否是模拟器件?如果是模拟器件,建议电源布局应尽量不影响到模拟部分的信号完整性。因此有几点需要考虑:
首先稳压电源芯片是否是比较干净,纹波小的电源?模拟部分的供电,对电源的要求比较高;
模拟部分和MCU是否是一个电源,在高精度电路的设计中,建议把模拟部分和数字部分的电源分开;
对数字部分的供电需要考虑到尽量减小对模拟电路部分的影响。
8. 在高速信号链的应用中,对于多ASIC都存在模拟地和数字地,究竟是采用地分割,还是不分割地?既有准则是什么?哪种效果更好?
迄今为止没有定论。一般情况下可以查阅芯片的手册。ADI所有混合芯片的手册中都是推荐你一种接地的方案,有些是推荐共地、有些是建议隔离地,这取决于芯片设计。
9. 何时要考虑线的等长?如果要考虑使用等长线的话,两根信号线之间的长度之差最大不能超过多少?如何计算?
差分线计算思路:如果传一个正弦信号,长度差等于它传输波长的一半,相位差就是180度,这时两个信号就完全抵消了。所以这时的长度差是最大值。以此类推,信号线差值一定要小于这个值。
10. 高速中的蛇形走线,适合在哪种情况?有什么缺点没?比如对于差分走线,又要求两组信号是正交的。
蛇形走线,因为应用场合不同而具有不同的作用:
如果蛇形走线在计算机板中出现,其主要起到一个滤波电感和阻抗匹配的作用,用于提高电路的抗干扰能力。计算机主机板中的蛇形走线,主要用在一些时钟信号中,如PCI-Clk、AGPCIK、IDE、DIMM等信号线。
若在一般普通PCB板中,除了具有滤波电感的作用外,还可作为收音机天线的电感线圈等等。如2.4G的对讲机中就用作电感。
对一些信号布线长度要求必须严格等长,高速数字PCB板的等线长是为了使各信号的延迟差保持在一个范围内,保证系统在同一周期内读取的数据的有效性(延迟差超过一个时钟周期时会错读下一周期的数据)。如INTELHUB架构中的HUBLink,一共13根,使用233MHz的频率,要求必须严格等长,以消除时滞造成的隐患,绕线是惟一的解决办法。一般要求延迟差不超过1/4时钟周期,单位长度的线延迟差也是固定的,延迟跟线宽、线长、铜厚、板层结构有关,但线过长会增大分布电容和分布电感,使信号质量有所下降。所以时钟 IC引脚一般都接端接,但蛇形走线并非起电感的作用。相反地,电感会使信号中的上升沿中的高次谐波相移,造成信号质量恶化,所以要求蛇形线间距最少是线宽的两倍。信号的上升时间越小,就越易受分布电容和分布电感的影响。
蛇形走线在某些特殊的电路中起到一个分布参数的LC滤波器的作用。
1. 高频信号布线时要注意哪些问题?
信号线的阻抗匹配;与其他信号线的空间隔离;对于数字高频信号,差分线效果会更好。
2. 在布板时,如果线密,孔就可能要多,当然就会影响板子的电气性能,怎样提高板子的电气性能?
对于低频信号,过孔不要紧,高频信号尽量减少过孔。如果线多可以考虑多层板。
3. 是不是板子上加的去耦电容越多越好?
去耦电容需要在合适的位置加合适的值。例如,在模拟器件的供电端口就需要加,并且需要用不同的电容值去滤除不同频率的杂散信号。
4. 一个好的板子它的标准是什么?
布局合理、电源线功率冗余度足够、高频阻抗、低频走线简洁。
5. 通孔和盲孔对信号的差异影响有多大?应用的原则是什么?
采用盲孔或埋孔是提高多层板密度、减少层数和板面尺寸的有效方法,并大大减少了镀覆通孔的数量。
但相比较而言,通孔在工艺上好实现,成本较低,所以一般设计中都使用通孔。
6. 在涉及模拟数字混合系统的时候,有人建议电层分割,地平面采取整片敷铜,也有人建议电地层都分割,不同的地在电源端点接,但是这样对信号的回流路径就远了,具体应用时应如何选择合适的方法?
如果有高频》20MHz信号线,并且长度和数量都比较多,那么需要至少两层给这个模拟高频信号。一层信号线,一层大面积地,并且信号线层需要打足够的过孔到地。这样的目的是:
对于模拟信号,这提供了一个完整的传输介质和阻抗匹配;
地平面把模拟信号和其他数字信号进行隔离;
地回路足够小,因为你打了很多过孔,地又是一个大平面。
7. 在电路板中,信号输入插件在PCB最左边沿,MCU在靠右边,那么在布局时是把稳压电源芯片放置在源靠近接插件(电源 IC输出5V经过一段比较长的路径才到达MCU),还是把电源IC放置到中间偏右(电源IC的输出5V的线到达MCU就比较短,但输入电源段线就经过比较长一段PCB板)?或是有更好的布局?
首先信号输入插件是否是模拟器件?如果是模拟器件,建议电源布局应尽量不影响到模拟部分的信号完整性。因此有几点需要考虑:
首先稳压电源芯片是否是比较干净,纹波小的电源?模拟部分的供电,对电源的要求比较高;
模拟部分和MCU是否是一个电源,在高精度电路的设计中,建议把模拟部分和数字部分的电源分开;
对数字部分的供电需要考虑到尽量减小对模拟电路部分的影响。
8. 在高速信号链的应用中,对于多ASIC都存在模拟地和数字地,究竟是采用地分割,还是不分割地?既有准则是什么?哪种效果更好?
迄今为止没有定论。一般情况下可以查阅芯片的手册。ADI所有混合芯片的手册中都是推荐你一种接地的方案,有些是推荐共地、有些是建议隔离地,这取决于芯片设计。
9. 何时要考虑线的等长?如果要考虑使用等长线的话,两根信号线之间的长度之差最大不能超过多少?如何计算?
差分线计算思路:如果传一个正弦信号,长度差等于它传输波长的一半,相位差就是180度,这时两个信号就完全抵消了。所以这时的长度差是最大值。以此类推,信号线差值一定要小于这个值。
10. 高速中的蛇形走线,适合在哪种情况?有什么缺点没?比如对于差分走线,又要求两组信号是正交的。
蛇形走线,因为应用场合不同而具有不同的作用:
如果蛇形走线在计算机板中出现,其主要起到一个滤波电感和阻抗匹配的作用,用于提高电路的抗干扰能力。计算机主机板中的蛇形走线,主要用在一些时钟信号中,如PCI-Clk、AGPCIK、IDE、DIMM等信号线。
若在一般普通PCB板中,除了具有滤波电感的作用外,还可作为收音机天线的电感线圈等等。如2.4G的对讲机中就用作电感。
对一些信号布线长度要求必须严格等长,高速数字PCB板的等线长是为了使各信号的延迟差保持在一个范围内,保证系统在同一周期内读取的数据的有效性(延迟差超过一个时钟周期时会错读下一周期的数据)。如INTELHUB架构中的HUBLink,一共13根,使用233MHz的频率,要求必须严格等长,以消除时滞造成的隐患,绕线是惟一的解决办法。一般要求延迟差不超过1/4时钟周期,单位长度的线延迟差也是固定的,延迟跟线宽、线长、铜厚、板层结构有关,但线过长会增大分布电容和分布电感,使信号质量有所下降。所以时钟 IC引脚一般都接端接,但蛇形走线并非起电感的作用。相反地,电感会使信号中的上升沿中的高次谐波相移,造成信号质量恶化,所以要求蛇形线间距最少是线宽的两倍。信号的上升时间越小,就越易受分布电容和分布电感的影响。
蛇形走线在某些特殊的电路中起到一个分布参数的LC滤波器的作用。
举报