多级路由级联——智能路灯
物联网 时代到来,城市交通自动化智能化要求全面升级,路灯节点间距20-200米不等,每个控制系统网络中,网关下属路灯数控制在1000盏以内,现场施工要求操作简单方便。
图1 路灯实景图
项目方案:使用工控板作为路灯系统集中控制器,广域网络通过4G技术(网关设备)与远程服务器中心建立连接,局域网络使用Zigbee无线网络对现场灯光进行控制,同时接收路灯节点返回的路灯状态数据。
路灯节点:每个路灯上有一个ZM32系列Zigbee模块,模块既做节点,也是路由,在一定区域内组建一个 通信网络 ;
网关控制器:网关控制器可直接采用ZLG致远电子工控主机,用于边缘计算,对路灯节点进行控制和数据处理;
数据传输终端:由于网关控制器分布在各个区域,和服务器主机之间通常距离较远,所有的路灯数据又需要统一管理,故采用4G DTU的方式,作为搭建局域网和广域网之间的桥梁。
图2 项目方案图
每个路灯采节点用ZM32模块来控制,ZM32模块可支持多级路由级联组成一个Zigbee网络,并对路灯节点数据进行转发传输。我们知道,Zigbee 通信效率会随着路由级数的增加而下降,所以路由器必须按需布局。那么,ZM32模块可支持多少级路由布局呢?多级路由级联之后的组网时间和通信性能如何呢?ZLG致远电子工程师对ZM32模块进行了多级路由级联测试。
在室内环境下,进行通信级联测试,主要记录在级联网络结构下的组网时间以及协调器和位于网络最深层次的路由设备间的通信性能,以验证模块的多跳功能,测试结果如下表。
表1 测试结果
说明:本次测试主要目的是为了验证多跳,而办公室空间有限,因此将远程信号强度调整到临界状态,使得每个模块依次传输,确保级联效果。实际使用时,可以通过安装位置的变化来保证信号强度,避免出现临界状态。
实际空间环境下,当RSSI达到-92dBm时,已经接近接收状态的临界值,此时通信稳定性不高,十分容易受到干扰。当受到干扰导致通信中断,会增加丢包率和组网时长。因此,目前的测试结果可能存在一定的误差。详细的测试方案可咨询ZLG工程师。
多级路由级联——智能路灯
物联网 时代到来,城市交通自动化智能化要求全面升级,路灯节点间距20-200米不等,每个控制系统网络中,网关下属路灯数控制在1000盏以内,现场施工要求操作简单方便。
图1 路灯实景图
项目方案:使用工控板作为路灯系统集中控制器,广域网络通过4G技术(网关设备)与远程服务器中心建立连接,局域网络使用Zigbee无线网络对现场灯光进行控制,同时接收路灯节点返回的路灯状态数据。
路灯节点:每个路灯上有一个ZM32系列Zigbee模块,模块既做节点,也是路由,在一定区域内组建一个 通信网络 ;
网关控制器:网关控制器可直接采用ZLG致远电子工控主机,用于边缘计算,对路灯节点进行控制和数据处理;
数据传输终端:由于网关控制器分布在各个区域,和服务器主机之间通常距离较远,所有的路灯数据又需要统一管理,故采用4G DTU的方式,作为搭建局域网和广域网之间的桥梁。
图2 项目方案图
每个路灯采节点用ZM32模块来控制,ZM32模块可支持多级路由级联组成一个Zigbee网络,并对路灯节点数据进行转发传输。我们知道,Zigbee 通信效率会随着路由级数的增加而下降,所以路由器必须按需布局。那么,ZM32模块可支持多少级路由布局呢?多级路由级联之后的组网时间和通信性能如何呢?ZLG致远电子工程师对ZM32模块进行了多级路由级联测试。
在室内环境下,进行通信级联测试,主要记录在级联网络结构下的组网时间以及协调器和位于网络最深层次的路由设备间的通信性能,以验证模块的多跳功能,测试结果如下表。
表1 测试结果
说明:本次测试主要目的是为了验证多跳,而办公室空间有限,因此将远程信号强度调整到临界状态,使得每个模块依次传输,确保级联效果。实际使用时,可以通过安装位置的变化来保证信号强度,避免出现临界状态。
实际空间环境下,当RSSI达到-92dBm时,已经接近接收状态的临界值,此时通信稳定性不高,十分容易受到干扰。当受到干扰导致通信中断,会增加丢包率和组网时长。因此,目前的测试结果可能存在一定的误差。详细的测试方案可咨询ZLG工程师。
举报