电力电子技术
直播中

王燕

7年用户 1628经验值
私信 关注
[问答]

满足各类不同系统需求的多种SPI总线隔离方案分享

满足各类不同系统需求的多种SPI总线隔离方案:ADuM152N、ADuM3150、LTM2895、ADuM3154、ADuM1441等

回帖(10)

荣春梅

2021-1-5 10:54:33
  串行外设接口(SPI)是一种同步串行总线接口,常用于微处理器和外围设备之间的短距离通信。SPI总线不是一种管理严格的协议,可以用各种方式来实现。常常需要使用电气隔离,或者电气隔离能带来好处。本应用笔记讨论各种SPI隔离技术,以帮助设计人员应对不同的系统级挑战,例如高通信速度、有限的印刷电路板(PCB)面积和低功耗。本应用笔记还可作为各种SPI隔离解决方案的选择指南。
  SPI协议通常由四个单向单端通道组成。SPI主机输出三个信号:时钟、串行数据和从器件选择。一条串行数据线自从器件返回主器件。在kbps和低mbps数据速率下,此物理层使SPI成为比较容易在主器件和从器件之间实现电气隔离的协议。对于全双工通信,标准四通道数字隔离器常常就足以实现透明的“直接使用”式解决方案。如果数据速率更高,则需要其他技术。
举报

梁峰

2021-1-5 10:54:46
  时钟速度最大化
  更普遍且更传统的形式是单一主器件与一个或多个从器件进行全双工通信。主器件通过将片选线设置为低电平并发送时钟信号来启动与从器件的通信。主器件和选定的从器件均在时钟上升沿写入总线,并在时钟下降沿读取数据。图1和图3中的示例系统便使用这种形式的SPI通信。
  
  图1.标准SPI实现
  三个正向通道、一个反向通道(3/1)的标准数字隔离器
  为定向通道添加隔离是相当直接的过程。数字隔离器是SPI隔离的自然选择,因为这些隔离器提供低传播延迟、良好的通道间匹配、紧凑的单芯片解决方案、鲁棒的通信且易于实施。这些特性使数字隔离器优于光耦合器解决方案。
  在数据采集系统中,吞吐速率不断攀升。尽管传播延迟很短,但这些延迟确实会限制全双工通信的最大数据速率。图2和图4的差异说明了这一影响。
  
  图2.标准SPI时序图
举报

陈平

2021-1-5 10:55:16
  时钟速率限制
  为了计算最大SPI时钟速度,全双工“直接使用”式实施方案必须考虑数字隔离器的若干特性。最小脉冲宽度、最大数据速率和传播延迟都可能是限制因素。
  图3显示了利用通用3/1四通道标准数字隔离器作为“直接使用”式电气隔离解决方案的SPI总线隔离。SPI时钟信号每个周期改变状态两次,但通过数字隔离器的数字数据并非如此。标准数字隔离器必须具有支持时钟信号的最大数据速率特性。在此示例器件中,最大数据速率特性不是限制因素。
  
  图3.标准数字隔离器SPI隔离
  注意图4中传播延迟的影响。在这个例子中,数据在时钟上升沿发送,在下降沿接收。
  
  图4.带隔离的标准SPI时序图
  主器件同时开始时钟和主器件输出、从器件输入(MOSI)信号的传输。从器件的主器件输入、从器件输出(MISO)信号传输由时钟上升沿触发;由于时钟沿延迟,MISO信号也被延迟。MISO信号随后必须经过标准数据隔离器,再到达主器件。在这个例子中,从器件和主器件均在时钟下降沿读取数据。
  SPI通信取决于与MISO信号同步的时钟信号。图5显示了传播延迟的影响,数据速率一直增加到通信失败。由于传播延迟,时钟下降沿导致读取发生在MISO信号转换时,而非MISO信号建立时。此系统的数据速率过高,通信不可靠。
  
  图5.主器件视角下的时序图
  如图5所示,到从器件和返回到主器件的传播延迟必须发生在小于SPI时钟周期一半的时间内。在应用中,PCB走线延迟、建立时间和从器件响应时间可能会进一步降低最大时钟速率。为简单起见,本应用笔记忽略这些因素,因此“直接使用”式全双工实施方案具有如下关系:
  SPI时钟半周期 ≥ 2 × tPROP_DELAY
  用数据手册中的最大传播延迟值计算最大数据速率。尽管系统在实验室中可以实现更高速度,但为了确保通信鲁棒,必须考虑温度、电源电压和器件的变化。表1提供了关于ADI公司各种数字隔离器的最大SPI数据速率的指南。
  表1.“直接使用”式全双工数字隔离器最大SPI时钟速率
  
举报

陈波

2021-1-5 10:55:31
  独立延迟时钟(回绕时钟)
  将标准数据数字隔离器插入SPI信号链可以实现的数据速率较低,一些全双工应用要求更快的SPI数据速率。图5所示的同步困境可以通过将时钟信号与MISO信号一道送回主器件来解决。更高数据速率是可以实现的,但采用这种方法时要考虑给SPI主器件设计带来的额外复杂性。通常,读取延迟的MISO和时钟信号需要额外的移位寄存器。
  采用标准数据隔离器实现的独立延迟时钟技术需要额外的隔离通道来返回(或回绕)主时钟信号。回绕时钟信号通过额外的隔离通道返回主器件。该延迟时钟信号被隔离器的正向和反向传播延迟所延迟,就像MOSI信号传输到从器件和MISO信号返回被延迟一样(见图6)。对于这种方法,必须使用具有低通道匹配时序特性的数字隔离器。最小SPI时钟周期(不考虑从器件和走线延迟)由最大脉冲宽度失真和同向通道匹配特性决定。确保计算出的最小SPI半时钟大于器件最小脉冲宽度特性。
  SPI时钟半周期 ≥ 2 × tPWD+ tPSKCD
  例如,ADuM152N的最大脉冲宽度失真为4.5 ns,最大同向通道匹配为4.0 ns,理论上可以获得最大38.4 MHz的时钟速度。
  实践中,必须考虑走线长度和从器件响应的延迟。
  
  图6.使用隔离通道延迟的高速SPI
  SPI数字隔离器ADuM3150和ADuM4150提供一个经调整的延迟时钟信号作为标准特性。如图7所示,ADuM3150在主器件侧实现了一个延迟电路。ADuM4150也在主器件侧实现了一个延迟电路。延迟时钟(DCLK)信号在ADuM3150出厂测试期间进行调整,以匹配各隔离器的往返传播延迟。与图6不同,ADuM3150不需要额外的隔离通道。这些SPI数字隔离器能够处理的最高时钟速率为40 MHz。
  
  图7.使用精密时钟延迟的高速SPI
  表2.回绕时钟SPI数据速率
  
举报

更多回帖

发帖
×
20
完善资料,
赚取积分