什么是均衡?
在介绍均衡之前,我们首先来了解一下Wireline Serdes系统。Serdes系统通常包含发送机(Transmitter,TX)、接收机(Receiver,RX)和传输通道(channel)三个部分。其中,发送机负责将并行的多路信号串化为单路信号,并将信号送入传输通道。接收机则负责接收串行信号,并将其解串化为多路信号。
图 1 常见的SerDes系统
如果传输通道是理想无损的传输线,那么发送机发送的信号就会完好无损的出现在接收端;接收机自然可以非常容易地恢复信号。然而,现实是由于传输通道存在趋肤效应和介质本身的损耗,传输通道往往表现出低通的特性。趋肤效应导致的损耗与信号频率的平方根成正比,而介质自身损耗与频率成正比。因此在频率较低时,通道的损耗主要由趋肤效应决定;而对于传输高频信号的通道,通常介质的损耗起主导作用。
图 2 PCB走线损耗与频率的关系
这里有一点需要说明的是,真正影响信号可靠传输的不是衰减本身,而是信道的衰减随频率变化。高低频信号的衰减差最终会导致码间干扰(Inter-Symbol Interference,ISI)。字面理解,码间干扰就是不同码元相互干扰。比如说,A时刻传输的“1”信号叠加到了B时刻传输的“0”信号上,使B时刻的信号幅度从0变为0.2。为什么高低频信号的衰减差就会导致码间干扰呢?因为信号高频分量的损失会使得信号边沿变缓,从而导致信号展宽。展宽后的信号可能会跨越多个单位时间间隔(1UI),就会出现上文提到的A时刻的信号叠加到B时刻上。信道的衰减越大,信号的展宽就越严重,叠加到其他时刻的信号上的比例也会越大。换句话说,SerDes系统需要真正解决并不是信号的衰减,而是高低频信号的衰减差。
图 3 信道衰减导致冲激响应展宽
通常我们会用眼图(eye diagram)来表征接收到信号的质量。眼图是将信号按单位时间间隔截取并叠加到一起得到波形图,形状类似与眼睛。只有当信号的眼图张开时,判决得到的信号才是无误码的。比如对于时钟信号(近似只含有一个频率分量)而言,在不考虑反射和噪声等情况下,即使经历了很大的衰减,其眼图仍然是张开的。接收端只需要放大信号,而不需要提供任何均衡补偿。但是对于一般的随机数据信号,其频谱分量非常丰富,包含从低频到高频的各种分量,因此如果高低频衰减差比较大,眼图就会闭合导致在接受端产生误码。
图 4 闭合的眼图和睁开的眼图
除了走线的导致的信号衰减外,另一个问题是芯片的
封装以及PCB板的过孔(Via)将会引入阻抗非连续性,最终导致信号的反射和谐振。在信道中来回反射的信号将会叠加到接收端,也会形成码间干扰;而谐振则会将特定频率的信号滤除,在谐振频率处形成巨大的插入损耗。这一点体现在频率响应上,就是频率响应在谐振频率的深度凹陷。
图 5 (a)PCB的过孔引入的stub;以及(b)有/无stub的传输线的衰减变化 [Elad Alon, UC Berkeley]
信道的非理想性使信号产生码间干扰,导致信号的眼图闭合。而均衡就是在发送端或接收端补偿信道的非理想性,消除码间干扰,从而使接收端的眼图重新张开。从频域上理解,均衡是通过高通滤波器补偿信道的低通特性;从时域上理解,均衡是对脉冲响应信号(pulse response)重新塑形,把其能量限制在一个时间间隔(1UI)之内,从而避免码间干扰。
图 6 均衡示意图 [Sam Palermo, TAMU]
| 常见的均衡技术常见收发器的均衡系统通常由发送端的前馈均衡(Feed Forward Equalizer,FFE),接收端的连续时间线性均衡(Continuous Time Linear Equalizer,CTLE)和判决反馈均衡(Decision Feedback Equalizer,DFE)组成。
图 7 常见收发器架构框图
什么是均衡?
在介绍均衡之前,我们首先来了解一下Wireline Serdes系统。Serdes系统通常包含发送机(Transmitter,TX)、接收机(Receiver,RX)和传输通道(channel)三个部分。其中,发送机负责将并行的多路信号串化为单路信号,并将信号送入传输通道。接收机则负责接收串行信号,并将其解串化为多路信号。
图 1 常见的SerDes系统
如果传输通道是理想无损的传输线,那么发送机发送的信号就会完好无损的出现在接收端;接收机自然可以非常容易地恢复信号。然而,现实是由于传输通道存在趋肤效应和介质本身的损耗,传输通道往往表现出低通的特性。趋肤效应导致的损耗与信号频率的平方根成正比,而介质自身损耗与频率成正比。因此在频率较低时,通道的损耗主要由趋肤效应决定;而对于传输高频信号的通道,通常介质的损耗起主导作用。
图 2 PCB走线损耗与频率的关系
这里有一点需要说明的是,真正影响信号可靠传输的不是衰减本身,而是信道的衰减随频率变化。高低频信号的衰减差最终会导致码间干扰(Inter-Symbol Interference,ISI)。字面理解,码间干扰就是不同码元相互干扰。比如说,A时刻传输的“1”信号叠加到了B时刻传输的“0”信号上,使B时刻的信号幅度从0变为0.2。为什么高低频信号的衰减差就会导致码间干扰呢?因为信号高频分量的损失会使得信号边沿变缓,从而导致信号展宽。展宽后的信号可能会跨越多个单位时间间隔(1UI),就会出现上文提到的A时刻的信号叠加到B时刻上。信道的衰减越大,信号的展宽就越严重,叠加到其他时刻的信号上的比例也会越大。换句话说,SerDes系统需要真正解决并不是信号的衰减,而是高低频信号的衰减差。
图 3 信道衰减导致冲激响应展宽
通常我们会用眼图(eye diagram)来表征接收到信号的质量。眼图是将信号按单位时间间隔截取并叠加到一起得到波形图,形状类似与眼睛。只有当信号的眼图张开时,判决得到的信号才是无误码的。比如对于时钟信号(近似只含有一个频率分量)而言,在不考虑反射和噪声等情况下,即使经历了很大的衰减,其眼图仍然是张开的。接收端只需要放大信号,而不需要提供任何均衡补偿。但是对于一般的随机数据信号,其频谱分量非常丰富,包含从低频到高频的各种分量,因此如果高低频衰减差比较大,眼图就会闭合导致在接受端产生误码。
图 4 闭合的眼图和睁开的眼图
除了走线的导致的信号衰减外,另一个问题是芯片的
封装以及PCB板的过孔(Via)将会引入阻抗非连续性,最终导致信号的反射和谐振。在信道中来回反射的信号将会叠加到接收端,也会形成码间干扰;而谐振则会将特定频率的信号滤除,在谐振频率处形成巨大的插入损耗。这一点体现在频率响应上,就是频率响应在谐振频率的深度凹陷。
图 5 (a)PCB的过孔引入的stub;以及(b)有/无stub的传输线的衰减变化 [Elad Alon, UC Berkeley]
信道的非理想性使信号产生码间干扰,导致信号的眼图闭合。而均衡就是在发送端或接收端补偿信道的非理想性,消除码间干扰,从而使接收端的眼图重新张开。从频域上理解,均衡是通过高通滤波器补偿信道的低通特性;从时域上理解,均衡是对脉冲响应信号(pulse response)重新塑形,把其能量限制在一个时间间隔(1UI)之内,从而避免码间干扰。
图 6 均衡示意图 [Sam Palermo, TAMU]
| 常见的均衡技术常见收发器的均衡系统通常由发送端的前馈均衡(Feed Forward Equalizer,FFE),接收端的连续时间线性均衡(Continuous Time Linear Equalizer,CTLE)和判决反馈均衡(Decision Feedback Equalizer,DFE)组成。
图 7 常见收发器架构框图
举报