滚动元件轴承缺陷
什么是滚动元件轴承缺陷,什么原因导致这些缺陷?
滚动元件轴承缺陷通常是机械引起的应力或润滑问题的假象,这些问题在轴承的机械部件内产生小裂纹或缺陷,导致振动增加。图5提供了滚动元件轴承的一些示例,并显示了若干可能发生的缺陷。
图5. (上)滚动元件轴承和(下)润滑与放电电流缺陷的示例。
为什么滚动元件轴承故障是一个问题?
滚动元件轴承几乎在所有类型的旋转机械上都会使用,从大型涡轮机到慢速旋转电机,从相对简单的泵和风扇到高速CNC主轴。轴承缺陷可能是润滑污染(图5)、安装不当、高频放电电流(图5)或系统负载增加的迹象。故障可能导致灾难性的系统损坏,并对其他系统部件产生重大影响。
如何检测和诊断滚动元件轴承故障?
有多种技术可用来诊断轴承故障,并且由于轴承设计背后的物理特性,每个轴承的缺陷频率可以根据轴承几何形状、旋转速度和缺陷类型来计算,这有助于诊断故障。轴承缺陷频率如图6所示。
图6. 轴承缺陷频率取决于轴承类型、几何形状和旋转速率。
对特定机器或系统的振动数据的分析,常常依赖于时域和频域分析的结合。时域分析可用来检测系统振动水平整体增加的趋势。但是,这种分析包含的诊断信息非常少。频域分析可提高诊断洞察力,但由于其他系统振动的影响,确定故障频率可能很复杂。
对于轴承缺陷的早期诊断,使用缺陷频率的谐波可识别早期或刚出现的故障,从而在灾难性故障发生之前对其进行监控和维护。为了检测、诊断、了解轴承故障的系统影响,包络检测(如图7所示)等技术与频域中的频谱分析相结合,通常可提供更具洞察力的信息。
图7. 诸如包络检测之类的技术可以从宽带宽振动数据中提取轴承早期缺陷特征
诊断滚动元件轴承故障时须考虑哪些系统规格?
低噪声和足够高的分辨率对于早期轴承缺陷检测至关重要。在缺陷刚刚出现时,缺陷特征的幅度通常很低。由于设计容差,轴承固有的机械滑动会将幅度信息传播到轴承频率响应中的多个仓,从而进一步降低振动幅度,因此要求低噪声以便较早地检测到信号2。
带宽对于轴承缺陷的早期检测至关重要。在旋转期间,每次撞击缺陷时,都会产生包含高频内容的脉冲(参见图7)。对轴承缺陷频率(而非旋转速率)的谐波进行监测可发现这些早期故障。由于轴承缺陷频率与旋转速率之间的关系,这些早期特征可以在数千赫兹范围内出现,并延伸到10 kHz到20 kHz范围之外2 。即使是低速设备,轴承缺陷的固有性质也要求较宽带宽以便及早检测到缺陷,避免系统谐振和系统噪声(会影响较低频段)的影响3。
动态范围对于轴承缺陷监测也很重要,因为系统负载和缺陷可能影响系统所经受的振动。负载增加会导致作用在轴承和缺陷上的力增加。轴承缺陷也会产生冲击,激发结构谐振,放大系统和传感器所经受的振动2。随着机器在停止/启动情况下或正常运行期间的速度上升和下降,变化的速度会为系统谐振激发创造潜在的机会,导致更高幅度的振动4。传感器的饱和可能导致信息丢失、误诊断,在某些技术的情况下甚至会损坏传感器元件。
滚动元件轴承缺陷
什么是滚动元件轴承缺陷,什么原因导致这些缺陷?
滚动元件轴承缺陷通常是机械引起的应力或润滑问题的假象,这些问题在轴承的机械部件内产生小裂纹或缺陷,导致振动增加。图5提供了滚动元件轴承的一些示例,并显示了若干可能发生的缺陷。
图5. (上)滚动元件轴承和(下)润滑与放电电流缺陷的示例。
为什么滚动元件轴承故障是一个问题?
滚动元件轴承几乎在所有类型的旋转机械上都会使用,从大型涡轮机到慢速旋转电机,从相对简单的泵和风扇到高速CNC主轴。轴承缺陷可能是润滑污染(图5)、安装不当、高频放电电流(图5)或系统负载增加的迹象。故障可能导致灾难性的系统损坏,并对其他系统部件产生重大影响。
如何检测和诊断滚动元件轴承故障?
有多种技术可用来诊断轴承故障,并且由于轴承设计背后的物理特性,每个轴承的缺陷频率可以根据轴承几何形状、旋转速度和缺陷类型来计算,这有助于诊断故障。轴承缺陷频率如图6所示。
图6. 轴承缺陷频率取决于轴承类型、几何形状和旋转速率。
对特定机器或系统的振动数据的分析,常常依赖于时域和频域分析的结合。时域分析可用来检测系统振动水平整体增加的趋势。但是,这种分析包含的诊断信息非常少。频域分析可提高诊断洞察力,但由于其他系统振动的影响,确定故障频率可能很复杂。
对于轴承缺陷的早期诊断,使用缺陷频率的谐波可识别早期或刚出现的故障,从而在灾难性故障发生之前对其进行监控和维护。为了检测、诊断、了解轴承故障的系统影响,包络检测(如图7所示)等技术与频域中的频谱分析相结合,通常可提供更具洞察力的信息。
图7. 诸如包络检测之类的技术可以从宽带宽振动数据中提取轴承早期缺陷特征
诊断滚动元件轴承故障时须考虑哪些系统规格?
低噪声和足够高的分辨率对于早期轴承缺陷检测至关重要。在缺陷刚刚出现时,缺陷特征的幅度通常很低。由于设计容差,轴承固有的机械滑动会将幅度信息传播到轴承频率响应中的多个仓,从而进一步降低振动幅度,因此要求低噪声以便较早地检测到信号2。
带宽对于轴承缺陷的早期检测至关重要。在旋转期间,每次撞击缺陷时,都会产生包含高频内容的脉冲(参见图7)。对轴承缺陷频率(而非旋转速率)的谐波进行监测可发现这些早期故障。由于轴承缺陷频率与旋转速率之间的关系,这些早期特征可以在数千赫兹范围内出现,并延伸到10 kHz到20 kHz范围之外2 。即使是低速设备,轴承缺陷的固有性质也要求较宽带宽以便及早检测到缺陷,避免系统谐振和系统噪声(会影响较低频段)的影响3。
动态范围对于轴承缺陷监测也很重要,因为系统负载和缺陷可能影响系统所经受的振动。负载增加会导致作用在轴承和缺陷上的力增加。轴承缺陷也会产生冲击,激发结构谐振,放大系统和传感器所经受的振动2。随着机器在停止/启动情况下或正常运行期间的速度上升和下降,变化的速度会为系统谐振激发创造潜在的机会,导致更高幅度的振动4。传感器的饱和可能导致信息丢失、误诊断,在某些技术的情况下甚至会损坏传感器元件。
举报