为了提供更多的功能,芯片变得越来越大,但是相反,封装却被要求以更小的尺寸来容纳这些更大尺寸的裸片。这就不可避免地要求,新的候选封装技术既能提高系统效率又能降低制造成本。
封装创新涉及的领域包括更广泛的额定电流和额定电压、散热及故障保护机制等。本文列出了工程师在为
半导体器件评估封装技术特性时需要考虑的关键因素。
我们从最通常的疑惑开始:小型的封装尺寸。
1. 更小的封装尺寸现在,我们希望IC封装能够节省
电路板空间,帮助实现更坚固的设计,并通过省去一些外部元器件来降低
PCB的组装成本。因此,业界正在对诸如D2PAK 7的IC封装技术进行优化,以期以相同的尺寸和引出线容纳面积增加高达20%的裸片。
新的封装设计还提供了可互换引出线选择,从而最大限度地利用尺寸,并提供更大的设计灵活性。然后是直插或曲插引脚式封装,这有助于优化电路板空间和所需的引脚分离。
业界也正在开发一些阈值电压在逻辑电平、面向电池供电设计的新封装,这样的封装使微控制器可以直接驱动诸如MOSFET的功率器件。此举也相应节省了电路板空间。
2. 功率密度电机驱动器、太阳能逆变器和
电源等等产品对功率芯片和模块的需求在不断增长,这拉动了在不增加封装尺寸的条件下对更高功率密度的需求。
设计师如何在保持封装鲁棒性和可靠性的同时,提高功率密度?首先,封装可以采用更大的引线框架面积,从而可以容纳诸如IGBT的更大的功率芯片。这也实现了较低的封装热阻,而有利于改善散热。
以意法半导体(ST)的新系统级封装(SiP)PWD13F60为例,它将4个功率MOSFET集成在了比同类电路小60%的封装内(图1)。PWD13F60封装集成了面向功率MOSFET的栅极驱动器、面向上侧驱动的自举二极管、交叉传导保护和欠压锁定。
3. 散热效率由于像IGBT这样的器件工作在较低温度可减小器件上的应力,因此封装的散热性能与其可靠性存在内在联系(图2)。由于温度较低所需的散热器尺寸就不大,因此散热特性也会影响散热器大小。此外,冷却要求的降低也为设计者在增加功率密度方面留有更大余地。
4. 散热用于在封装内部产生隔离的常规方法通常既昂贵又难以处理。而且,它们远不足以管理IGBT等高功率密度器件的散热。
5. 开关损耗特别是对像工业驱动器等器件中工作频率高达20kHz的硬开关电路,为提高封装效率,减少开关损耗势在必行。此外,可靠的开关和低EMI增强了小功率应用中的无散热器工作。
若是想要寻找或入手IC元器件,可首选深圳市梅峰
电子科技,是一家专业代理、分销世界名牌IC(集成电路)的科技公司。十多年来主要经营JRC、MAXIM 、ISD、APLUS、IMP、ALLIACE 等世界名牌IC(集成电路),专业为客户提供录音、烧录、编程、设计、掩膜等全套服务。经营集成电路产品广泛应用于民用、工业、军工等电子产品领域。
此文章转载于《EDN电子技术设计》2018年3月刊,如有问题请及时联系本人马上删除。