模拟对话 数字转换器
简介
旋变器和机电传感器可用来精确测量角位置,以可变耦合变压器的方式工作,其初级绕组和两个次级绕组之间的磁耦合量根据旋转部件(转子)位置而改变;转子通常安装在电机轴上。旋变器可部署在工业电机控制、伺服器、机器人、混合动力和全电动汽车中的动力系统单元以及要求提供精确轴旋转的其他许多应用中。旋变器在这些应用中可以长期耐受严苛条件,是恶劣环境下军用系统的完美选择。
标准旋变器的初级绕组位于转子上,两个次级绕组位于定子上。而另一方面,可变磁阻旋变器的转子上无绕组,其初级和次级绕组均在定子上,但转子的凸极(裸露极点)将次级正弦变化耦合至角位置。图]
图 1. 经典旋变器与可变磁阻旋变器
如等式]
其中,θ是轴角,ω是激励信号频率,]两路输出信号由轴角的正弦和余弦信号调制。激励信号以及正弦和余弦输出信号的图示如图 2 所示。正弦信号在 90°和 270°时具有最大幅度,余弦信号在 0°和 180°时具有最大幅度。
表]采用正弦波参考信号激励初级绕组会在次级绕组上产生两路电磁感应差分输出信号(正弦信号和余弦信号)。旋变数字转换器(RDC)在旋变器和系统微处理器之间实现接口,采用这些正弦和余弦信号解码电机轴的角位置和旋转速度。
大部分RDC使用Type-II跟踪环路计算位置和速度。Type-II环路采用二阶滤波器,确保静止或恒定速度输入信号的稳态误差为零。RDC对两路输入信号进行同步采样,为跟踪环路 提供数字化数据。使用这类环路的RDC最新实例,是ADI的完整 10 位至 16 位跟踪转换器AD2S1210其片内可编程正 弦振荡器提供初级绕组的激励信号。
如表 1 所示,典型旋变器需要一个低阻抗的 3 V rms至 7 V rms信号,才能驱动初级绕组。RDC采用 5 V电源供电,提供典型值为 7.2 V p-p差分信号的激励输出。该信号的幅度和驱动能力无法满足旋变器的输入规格。此外,旋变器最高可将信号衰减 5 倍,因此旋变器输出幅度不符合RDC输入幅度要 求,如表 2 所示。
对此问题的一种解决方案是使用差分放大器增压初级端的正弦信号。该放大器必须要能够驱动低至 100 Ω的负载。常 见的做法是以大信号驱动初级端,以获得良好的信噪比。随后,便能以电阻分压器衰减输出正弦和余弦信号。
在很多工业和汽车应用中,噪声环境下使用RDC会使正弦和余弦线路上感应高频噪声。为了解决这一问题,应尽可能靠近RDC放置一个简单的差分低通滤波器。图 3 显示集成放大 器和滤波器的典型旋变数字转换器接口。
| ]然后,求两者之差:
[table]
|
| ]最后,使用内部产生的合成基准解调信号:
[table]
|
| ]对于较小的角度误差(θ – ϕ),运用三角恒等式E0 (sin θ cos ϕ – cos θ sin ϕ) = E0 sin (θ – ϕ),即大致等于 E0 (θ – ϕ) 。 E0 (θ – ϕ)是转 子角度误差和转换器数字角度输出之差。Type-II跟踪环路消除了误差信号。完成该操作后,ϕ等于旋转角θ 。
RDC]选择合适的器件之前,工程师必须考虑表征旋变数字转换器的一系列参数。表 2 显示AD2S1210 的RDC重要参数和规格,这些参数和规格奠定了同类一流转换器的基础。表 2. AD2S1210 的RDC重要参数和数值
[table]
参数
| 典型值
| 单位
| 说明
| 输入电压
| 2.3–4.0
| V p-p
| 正弦和余弦输入的差分信号范围
| 锁相范围
| ±44
| 度
| RDC产生的激励信号与正弦和余弦输入之间的相移
| 角度精度
| ±2.5
| 弧分
| RDC角度精度
| 分辨度
| 10, 12, 14, 16
| 位
| RDC分辨率
| 速度精度
| 2 | LSB
| RDC提供的速度精度
| 跟踪速率
| 3125, 1250, 625, 156
| rps
| 特定分辨率下的跟踪能力
| 建立时间
| 2.2, 6, 14.7, 66
| ms | 特定分辨率下针对 179°步进变化的转换器响应时间
| |
误差源
完整系统的精度由RDC精度,以及旋变器、系统架构、线缆、激励缓冲器和正弦/余弦输入电路的误差所确定。最常见的系统误差来源是幅度失配、信号相移、失调和加速。
幅度失配是正弦和余弦信]
其中,δ是余弦信号相对于正弦信号的幅度失配百分比。静态位置误差ε以弧度表示,定义如下:
等式]
RDC可接受来自旋变器的差分正弦和余弦信号。旋变器移除载波上的所有直流分量,因此必须添加一个VREF/2]
在正弦和余弦信号载波相互反相的象限内,共模失调引起的误差更严重。当位置范围为]
图 5. 旋变器象限
图]
图 6. 直流偏置失调
误差的另一个来源是差分相移,即旋变器正弦和余弦信号之间的相移。受耦合影响,所有旋变器上都会出现一些差分相移。只要存在微小的旋变残余电压或正交电压,即表示出现较小的差分相移。如果正弦和余弦信号线路的电缆长度不等,或者驱动不同的负载,也会产生相移。
余弦信号相对正弦信号的差分相位可以表示为:
其中,α是差分相移。
求解αα]
其中,α和ε的单位为弧度。
大部分旋变器还会在激励参考信号和其中,β是正弦/余弦信号和激励参考信号之间的相移。
通过选择具有较小残余电压的旋变器、确保正弦和余弦信号采取完全相同的处理方式并消除参考相移,则可将此误差降 至最小。
在静态工作条件下,激励基准信号和信号线之间的相移不会影响转换器精度,但由于转子阻抗和目标信号的无功分量,运动中的旋变器会产生速度电压。速度电压位于目标信号象限内,它仅在运动时产生,在静态角度下并不存在。其最大幅度为:
| ]在实际旋变器中,转子绕组同时含有无功和阻性分量。当转子存在速度但又处于静止状态时,阻性分量会在参考激励中 产生非零相移。激励的非零相移与速度电压共同导致跟踪误差,可近似计算如下:
[table]
|
| ]为了补偿旋变器参考激励和正弦/余弦信号之间的相位误差,AD2S1210 采用内部滤波后的正弦和余弦信号来合成与参考 频率载波相位一致的内部参考信号。它通过确定正弦或余弦(取较大者,以改善相位精度)的过零并评估旋变器参考激励相位,便可降低参考信号和正弦/余弦输入信号之间的相移至 10°以内,并在±44°相移情况下工作。合成参考模块的框图如图 7 所示。
|
其中,环路系数随分辨率、输入信号幅度和采样周期的变化而改变。AD2S1210]
表 3. RDC系统响应参数参数
| 说明
| 10 位分辨率
| 12 位分辨率
| 14 位分辨率
| 16 位分辨率
|
k1 | ADC增益
| 输入电压/基准电压 = (3.15/2)/2.47(标称值) |
k2 | 误差增益
| 12π × 106
| 36π × 106
| 164π × 106 | 132π × 106 |
a | 补偿器
零点系数
| 8187/8192
| 4095/4096
| 8191/8192 | 32,767/32,768 |
b | 补偿器
极点系数
| 509/512
| 4085/4096
| 16,359/16,384 | 32,757/32,768 |
c | 积分器增益
| 1/220
| 1/222
| 1/224
| 1/226
|
T | 采样周期
| 1/(CLKIN/2)
|
加速度产生的跟踪误差便可计算如下:
[table]
[tr][td]
[/td][td]
]图 9 显示不同分辨率设置下的角度误差与加速度的关系。