这种自适应调制由数字逻辑使用监测无线LAN链路两端获得的信息自动完成。当前设计的大多数无线电使用某类DSP,控制无线电的性能。除改变调制外,无线电还可以改变传输频率。在突发式信号中,无线电可以改变其传送短突发信号的定时。雷达系统使用日益复杂的DSP,调整发送的雷达信号,改善侦测来自日益秘密的标靶的反射的能力。这些DSP新技术改善了性能,使雷达信号侦测起来更加困难。
现代功放器设计采用了第二种数字RF形式。大多数现代发射机都采用各种预失真技术,降低异道干扰,优化运营效率。其中一种技术是自适应数字预失真(DPD)。这种方法使用发射机输出样本,计算半导体放大器固有的非线性行为导致的误码。然后,DSP算法生成校正系数,用来预失真进入的信号。与没有预失真技术的信号相比,得到的信号会减少频谱失真及降低ALCR。
数字RF的优势如此明显,因此RF行业正在很大程度上转向数字RF,以进行信号处理,改善模拟RF元件的性能,如功放器。数字RF技术不仅改变了RF产品的设计,还改变了测试要求和方法。
数字RF改变整个RF测试仪器格式
数字RF较传统模拟RF有多个重大优势。数字元件的成本正日益低于模拟元件。数字电路对温度变化的灵敏性较低。可以使用软件改变数字RF系统,可以更灵活地调节元件性能。制造过程得到简化,可以更精确、更加可适应地进行调谐。
这提高了对能够进行杰出的频谱、调制和瞬态信号测量的仪器需求。市场上大多数新的分析仪在仪器中同时内置了频谱分析功能和调制分析功能。但是,许多分析仪缺少检测和捕获数字RF信号中存在的快速瞬态事件的关键能力。如果不能可靠地捕获信号,然后进行分析,那么分析仪的带宽和动态范围等特点再好也没什么意义。这种挑战已经明显提高了对实时频谱分析仪的需求,其不仅仅提供杰出的频谱和调制分析,还提供强大的工具,可以发现感兴趣的信号,可靠地触发这些信号,把整个信号捕获到深存储器中。
这种自适应调制由数字逻辑使用监测无线LAN链路两端获得的信息自动完成。当前设计的大多数无线电使用某类DSP,控制无线电的性能。除改变调制外,无线电还可以改变传输频率。在突发式信号中,无线电可以改变其传送短突发信号的定时。雷达系统使用日益复杂的DSP,调整发送的雷达信号,改善侦测来自日益秘密的标靶的反射的能力。这些DSP新技术改善了性能,使雷达信号侦测起来更加困难。
现代功放器设计采用了第二种数字RF形式。大多数现代发射机都采用各种预失真技术,降低异道干扰,优化运营效率。其中一种技术是自适应数字预失真(DPD)。这种方法使用发射机输出样本,计算半导体放大器固有的非线性行为导致的误码。然后,DSP算法生成校正系数,用来预失真进入的信号。与没有预失真技术的信号相比,得到的信号会减少频谱失真及降低ALCR。
数字RF的优势如此明显,因此RF行业正在很大程度上转向数字RF,以进行信号处理,改善模拟RF元件的性能,如功放器。数字RF技术不仅改变了RF产品的设计,还改变了测试要求和方法。
数字RF改变整个RF测试仪器格式
数字RF较传统模拟RF有多个重大优势。数字元件的成本正日益低于模拟元件。数字电路对温度变化的灵敏性较低。可以使用软件改变数字RF系统,可以更灵活地调节元件性能。制造过程得到简化,可以更精确、更加可适应地进行调谐。
这提高了对能够进行杰出的频谱、调制和瞬态信号测量的仪器需求。市场上大多数新的分析仪在仪器中同时内置了频谱分析功能和调制分析功能。但是,许多分析仪缺少检测和捕获数字RF信号中存在的快速瞬态事件的关键能力。如果不能可靠地捕获信号,然后进行分析,那么分析仪的带宽和动态范围等特点再好也没什么意义。这种挑战已经明显提高了对实时频谱分析仪的需求,其不仅仅提供杰出的频谱和调制分析,还提供强大的工具,可以发现感兴趣的信号,可靠地触发这些信号,把整个信号捕获到深存储器中。
举报