WiMAX网络的覆盖距离
Wi-Fi网络每个接入点 (access point, AP) 的覆盖距离一般在数十或数百米之内; 而 WiMAX 网络的每个基站则可覆盖大约1公里的范围。要达到这个范围,移动 WiMAX 网络采用了包括大发射功率、子信道化和自适应调制等一大批技术,以实现更长的覆盖距离。
简言之,射频功率 (radio frequency, RF) 与覆盖距离成正比,故更大的功率
就等于更长的覆盖距离。为了获得长覆盖距离,WiMAX 基站的发射功率级在+43dBm (20W) 左右;而 Wi-Fi AP 的典型发射功率是 +18 dBm (60 mW)。二者相差足足 330 多倍!WiMAX 移动台 (mobile station, MS) 的发射功率一般为 +23 dBm (200mW),Wi-Fi仅 +18 dBm (60 mW)。蜂窝 (CDMA) 基站和移动台的发射功率都和 WiMAX 的差不多。不过,为了获得更高的吞吐量,WiMAX 采用的调制级要高得多,故 WiMAX 需要比蜂窝好得多的信噪比 (SNR)。对于移动发射器,高调制级要求大幅度提高 PA 的线性度,致使 PA 设计比 GSM 或 CDMA 的要复杂得多。
你可能注意到下行功率 (从基站到移动台) 与上行功率 (从移动台到基站) 之间的差距很大,所以移动 WiMAX 网络的上行链路被严格限制 (当然,蜂窝网络也存在这种情况)。这就是说,移动台很容易接收到基站的发射信号,但移动台自身的发射功率却较低,难以被基站侦听到。
解决这种失配问题的方法之一是利用一种被称为子信道化 (subchannelization)的技术,亦即把所有可用的子信道分为若干子集,分别分配给各个特定用户。实际上,每一个移动台的能量都集中在一个较小的频率范围内,净信号增益变为10*log (Ntotal/Nused),这里Nused代表分配给用户的子载波数目;而Ntotal 则代表可用的子载波总数。例如,如果一个用户获分配的子信道包含 24 个子载波,则与基站 (在所有841个分配的子载波上发射) 相关的净增益为 10*log(841/24)=15.4 dB。其余的子载波可用于其它用户,而且他们可同时使用这些子载波。
解决链路失衡的另一种技术是自适应调制。这种情况下,移动台利用比基站更低的调制级发射。比如,移动台可能发射 QPSK 或 16QAM 信号;而基站则采用64QAM 技术发射。由于接收 QPSK 或 16QAM 所需的 SNR 比 64QAM 的为低,采用较低的调制级,以较低的发射功率就可以让移动台与基站进行通信 (此时,由于较低的调制级使得每子载波发射的比特位较少,故上行链路的吞吐量便会下降)。例如,QPSK-1/2 所需的SNR为5 dB,16QAM-1/2 为 10.5 dB,64QAM-3/4 为 20 dB (注1)。如果移动台采用 QPSK 调制进行发射,基站能够容许的链路损耗要比采用16QAM 时多 5.5 dB。
如果子信道化和自适应调制技术相结合,网络运营商就能够有效地平衡上行链路和下行链路的预算,而且网络将可双向工作。但这种综合方案的缺点包括:上行链路的吞吐量将低于下行链路;子信道化限制了移动发射可用的子载波数目;以及较低的调制级使每个可用子载波上发射的比特位较少。
移动WiMAX小区的功率分布
明白了上述的解释后,让我们看看 WiMAX 小区上的发射功率分布如何。一个普遍的误解是移动台只在小区边缘才以最大的功率发射,而接近基站时的功率
便较低。其实不然,移动台在整个覆盖范围内的发射功率都很高。
要了解原因何在,让我们设想一个移动设备从小区边缘直接向基站移动。在小区尽头时,它的路径损耗非常大,这时移动设备将采用最稳健的调制方式、以最大的功率进行发射,故上行数据率相当低。但由于移动台发射功率很高,且调制稳健,基站能够接收到移动台的发射信号,而链路工作良好。
随着移动设备越来越接近基站,路径损耗减少。由于接收到的信号现在远大于噪声基底,基站的信号级别增高,SNR变大。相应地,基站可能会指示移动设备开始降低功率 (以尽可能减小不同移动台之间的干扰)。不过,一旦信号级支持更高的调制级,基站就会指示移动设备切换调制方式,以提高网络总体容量。
再回到我们比较 QPSK / 16QAM 的例子,假设一个发射器在 +23 dBm下工作,并刚达到了位于小区边缘范围时 QPSK 所需的5 dB 的SNR,当它向基站靠近时,路径损耗下降,基站可能通知移动台减小发射功率。然而,一旦路径损耗减小5.5 dB,由于这时移动台能够获得 10.5 dB 的SNR,故基站会指示移动台切换到16QAM-1/2 调制方式,发射功率重新回复到 +23 dBm。所以,移动设备一般都以较高的功率进行发射,除非它靠向基站,近得可以转为采用 16QAM 方式工作 (许多情况下甚至可以采用64QAM),这时功率便会下降。如图1所示。
WiMAX网络的覆盖距离
Wi-Fi网络每个接入点 (access point, AP) 的覆盖距离一般在数十或数百米之内; 而 WiMAX 网络的每个基站则可覆盖大约1公里的范围。要达到这个范围,移动 WiMAX 网络采用了包括大发射功率、子信道化和自适应调制等一大批技术,以实现更长的覆盖距离。
简言之,射频功率 (radio frequency, RF) 与覆盖距离成正比,故更大的功率
就等于更长的覆盖距离。为了获得长覆盖距离,WiMAX 基站的发射功率级在+43dBm (20W) 左右;而 Wi-Fi AP 的典型发射功率是 +18 dBm (60 mW)。二者相差足足 330 多倍!WiMAX 移动台 (mobile station, MS) 的发射功率一般为 +23 dBm (200mW),Wi-Fi仅 +18 dBm (60 mW)。蜂窝 (CDMA) 基站和移动台的发射功率都和 WiMAX 的差不多。不过,为了获得更高的吞吐量,WiMAX 采用的调制级要高得多,故 WiMAX 需要比蜂窝好得多的信噪比 (SNR)。对于移动发射器,高调制级要求大幅度提高 PA 的线性度,致使 PA 设计比 GSM 或 CDMA 的要复杂得多。
你可能注意到下行功率 (从基站到移动台) 与上行功率 (从移动台到基站) 之间的差距很大,所以移动 WiMAX 网络的上行链路被严格限制 (当然,蜂窝网络也存在这种情况)。这就是说,移动台很容易接收到基站的发射信号,但移动台自身的发射功率却较低,难以被基站侦听到。
解决这种失配问题的方法之一是利用一种被称为子信道化 (subchannelization)的技术,亦即把所有可用的子信道分为若干子集,分别分配给各个特定用户。实际上,每一个移动台的能量都集中在一个较小的频率范围内,净信号增益变为10*log (Ntotal/Nused),这里Nused代表分配给用户的子载波数目;而Ntotal 则代表可用的子载波总数。例如,如果一个用户获分配的子信道包含 24 个子载波,则与基站 (在所有841个分配的子载波上发射) 相关的净增益为 10*log(841/24)=15.4 dB。其余的子载波可用于其它用户,而且他们可同时使用这些子载波。
解决链路失衡的另一种技术是自适应调制。这种情况下,移动台利用比基站更低的调制级发射。比如,移动台可能发射 QPSK 或 16QAM 信号;而基站则采用64QAM 技术发射。由于接收 QPSK 或 16QAM 所需的 SNR 比 64QAM 的为低,采用较低的调制级,以较低的发射功率就可以让移动台与基站进行通信 (此时,由于较低的调制级使得每子载波发射的比特位较少,故上行链路的吞吐量便会下降)。例如,QPSK-1/2 所需的SNR为5 dB,16QAM-1/2 为 10.5 dB,64QAM-3/4 为 20 dB (注1)。如果移动台采用 QPSK 调制进行发射,基站能够容许的链路损耗要比采用16QAM 时多 5.5 dB。
如果子信道化和自适应调制技术相结合,网络运营商就能够有效地平衡上行链路和下行链路的预算,而且网络将可双向工作。但这种综合方案的缺点包括:上行链路的吞吐量将低于下行链路;子信道化限制了移动发射可用的子载波数目;以及较低的调制级使每个可用子载波上发射的比特位较少。
移动WiMAX小区的功率分布
明白了上述的解释后,让我们看看 WiMAX 小区上的发射功率分布如何。一个普遍的误解是移动台只在小区边缘才以最大的功率发射,而接近基站时的功率
便较低。其实不然,移动台在整个覆盖范围内的发射功率都很高。
要了解原因何在,让我们设想一个移动设备从小区边缘直接向基站移动。在小区尽头时,它的路径损耗非常大,这时移动设备将采用最稳健的调制方式、以最大的功率进行发射,故上行数据率相当低。但由于移动台发射功率很高,且调制稳健,基站能够接收到移动台的发射信号,而链路工作良好。
随着移动设备越来越接近基站,路径损耗减少。由于接收到的信号现在远大于噪声基底,基站的信号级别增高,SNR变大。相应地,基站可能会指示移动设备开始降低功率 (以尽可能减小不同移动台之间的干扰)。不过,一旦信号级支持更高的调制级,基站就会指示移动设备切换调制方式,以提高网络总体容量。
再回到我们比较 QPSK / 16QAM 的例子,假设一个发射器在 +23 dBm下工作,并刚达到了位于小区边缘范围时 QPSK 所需的5 dB 的SNR,当它向基站靠近时,路径损耗下降,基站可能通知移动台减小发射功率。然而,一旦路径损耗减小5.5 dB,由于这时移动台能够获得 10.5 dB 的SNR,故基站会指示移动台切换到16QAM-1/2 调制方式,发射功率重新回复到 +23 dBm。所以,移动设备一般都以较高的功率进行发射,除非它靠向基站,近得可以转为采用 16QAM 方式工作 (许多情况下甚至可以采用64QAM),这时功率便会下降。如图1所示。
举报