射频卡的设计原理
MIFARE 1(M1)型射频卡的容量为8K位,数据保存期为10年,可改写10万次,读无限次。M1卡不带电源,自带天线,内含加密控制逻辑电路和通讯逻辑电路,卡与读写器之间的通讯采用国际通用的DES和RES保密交叉算法,具有极高的保密性能。
工作原理:卡片在电气部分只由—个天线和ASIC组成,没有其它外部器件;天线:卡片的天线是只有几组绕线的线圈,很适于封装到ISO卡片中;ASIC:卡片的ASIC由一个高速(106KB波特率)的接口,—个控制单元和—个8K位EEPROM组成。
M1 射频卡的工作原理是:读写器向M1卡发一组固定频率的电磁波,卡片内有—个LC串联谐振电路,其频率与读写器发射频率相同,在电磁波的激励下,LC谐振电路产生共振,从而使电容内有了电荷,在这个电容的另一端,接有—个单向导通的电子泵,将电容内的电荷送到另—个电容内储存,当所积累的电荷达到2V时,此电容可做为电源为其它电路提供工作电压,将卡内数据发射出去或接取读写器的数据。
射频卡电源产生电路的设计与应用
射频卡的功能组成包括两部分,射频接口电路和数字电路。解决卡内能量的来源和信号的无线传输则是射频卡的突出优点,而这也是射频接口电路的关键技术。从读卡器发射的射频信号,在卡内经过耦合、整流滤波与稳压三过程,便可得到直流工作电压。
线圈耦合
L1、L2分别是天线的原边线圈和副边线圈, L2从L1耦合过来一定能量的高频电磁波(载波频率为13.56MHZ), 两端的电压即 是接收到的高频信号。对于卡内接收天线L2,在f=13.56MHZ频率下,有其等效的电感、电容和损耗电阻值,构成一串联谐振电路。对于读卡器本身而言,其发射的电磁波能量一定,而卡上的感生电压由发射的电磁波的能量和卡与读卡器的距离共同决定。那么在得到电感L2 的等效电感、电容和损耗电阻值后,就可以在电容两端并一可变电阻,通过改变卡与读卡器的距离,测试电阻上的相应电压值,来推算L2上感应到的等效电压源的值。
整流滤波
天线上获得的耦合电压通过C送人FWR全波整流电路,从而得到单边的交流信号。在经滤波电容CP滤掉高频信号,其两端输出的电压既为卡内需要的直流电源电压;该电容同时又作为储能器件以争强负载能力。这里信号经滤波电容后可得到—个直流电压,但此时电压不够稳定,需采取稳压措施。
射频卡的设计原理
MIFARE 1(M1)型射频卡的容量为8K位,数据保存期为10年,可改写10万次,读无限次。M1卡不带电源,自带天线,内含加密控制逻辑电路和通讯逻辑电路,卡与读写器之间的通讯采用国际通用的DES和RES保密交叉算法,具有极高的保密性能。
工作原理:卡片在电气部分只由—个天线和ASIC组成,没有其它外部器件;天线:卡片的天线是只有几组绕线的线圈,很适于封装到ISO卡片中;ASIC:卡片的ASIC由一个高速(106KB波特率)的接口,—个控制单元和—个8K位EEPROM组成。
M1 射频卡的工作原理是:读写器向M1卡发一组固定频率的电磁波,卡片内有—个LC串联谐振电路,其频率与读写器发射频率相同,在电磁波的激励下,LC谐振电路产生共振,从而使电容内有了电荷,在这个电容的另一端,接有—个单向导通的电子泵,将电容内的电荷送到另—个电容内储存,当所积累的电荷达到2V时,此电容可做为电源为其它电路提供工作电压,将卡内数据发射出去或接取读写器的数据。
射频卡电源产生电路的设计与应用
射频卡的功能组成包括两部分,射频接口电路和数字电路。解决卡内能量的来源和信号的无线传输则是射频卡的突出优点,而这也是射频接口电路的关键技术。从读卡器发射的射频信号,在卡内经过耦合、整流滤波与稳压三过程,便可得到直流工作电压。
线圈耦合
L1、L2分别是天线的原边线圈和副边线圈, L2从L1耦合过来一定能量的高频电磁波(载波频率为13.56MHZ), 两端的电压即 是接收到的高频信号。对于卡内接收天线L2,在f=13.56MHZ频率下,有其等效的电感、电容和损耗电阻值,构成一串联谐振电路。对于读卡器本身而言,其发射的电磁波能量一定,而卡上的感生电压由发射的电磁波的能量和卡与读卡器的距离共同决定。那么在得到电感L2 的等效电感、电容和损耗电阻值后,就可以在电容两端并一可变电阻,通过改变卡与读卡器的距离,测试电阻上的相应电压值,来推算L2上感应到的等效电压源的值。
整流滤波
天线上获得的耦合电压通过C送人FWR全波整流电路,从而得到单边的交流信号。在经滤波电容CP滤掉高频信号,其两端输出的电压既为卡内需要的直流电源电压;该电容同时又作为储能器件以争强负载能力。这里信号经滤波电容后可得到—个直流电压,但此时电压不够稳定,需采取稳压措施。
举报