计算技术的不断进步,包括了微处理器速度和硬盘驱动器存储容量的提高,加之软硬件成本的降低,引发了惊人速度的数据爆炸。 特别是在测量应用中,工程师和科学家们每分每秒都能收集大量的数据。 欧洲核子研究中心的大型强子对撞机的运行实验每秒钟能产生40 TB的数据。 而波音喷气发动机运行时,每隔30分钟系就统会创建10 TB的操作信息(Gantz,2011)。 这就是“大规模数据”。
大规模数据现象为数据分析、搜索、集成、报告和系统维护带来了新的挑战,只有满足这些挑战才能跟上数据飞速增长的步伐。 数据的来源是多方面的,而工程师和科学家认为最为有趣的是来自真实世界的数据, 即捕获和数字化的测量数据。 因此,它也被称作“大规模测量数据”,可以通过测量振动、射频信号、温度、压力、声音、图象、光、磁、电压等现象获得这些数据。 大规模测量数据TM在广泛的数据采集领域激起了三大技术趋势。
计算技术的不断进步,包括了微处理器速度和硬盘驱动器存储容量的提高,加之软硬件成本的降低,引发了惊人速度的数据爆炸。 特别是在测量应用中,工程师和科学家们每分每秒都能收集大量的数据。 欧洲核子研究中心的大型强子对撞机的运行实验每秒钟能产生40 TB的数据。 而波音喷气发动机运行时,每隔30分钟系就统会创建10 TB的操作信息(Gantz,2011)。 这就是“大规模数据”。
大规模数据现象为数据分析、搜索、集成、报告和系统维护带来了新的挑战,只有满足这些挑战才能跟上数据飞速增长的步伐。 数据的来源是多方面的,而工程师和科学家认为最为有趣的是来自真实世界的数据, 即捕获和数字化的测量数据。 因此,它也被称作“大规模测量数据”,可以通过测量振动、射频信号、温度、压力、声音、图象、光、磁、电压等现象获得这些数据。 大规模测量数据TM在广泛的数据采集领域激起了三大技术趋势。
举报