电源技术论坛
直播中

Duke

10年用户 1838经验值
擅长:嵌入式技术
私信 关注
[问答]

1.5 V 碱性电池来获得 3.3 V 输出,哪种方案比较好?

使用了一个 1.5 V 碱性电池来获得 3.3 V 输出,为了实现高效率的设计,需要运用很多知识并进行大量测量。

有两个办法:
一是计算目标系统在整个电池寿命期间的能效值,帮助设计人员选出效率最高的 DC/DC 转换器和电感器;二是通过使用两个 Otii 工具,在整个工作范围内利用不同电感器对一个或多个 DC/DC 转换器进行全面特征化。最终,设计人员可以选择最佳组合以获得最佳电池性能。

我想知道的是,那种方法比较好?最好有案例可以分享

回帖(6)

硬件工程师1

2019-1-16 14:07:59
案例 1

Qoitech AB 的 Otii-Arc-001(以下简称为 Otii)充当电池,扫描电压范围为 1.5 V 到 0.9 V。通过将来自 DC/DC 转换器的输出能量(Otii 扩展端口 ADC 测量电流和电压)除以送到 DC/DC 转换器的输入能量(Otii 主电流和电压)而得到效率。负载为 DUT(被测设备,即目标系统)。务必注意,测量时间应足够长,以确保算得正确的平均值,稍后将对此加以讨论。

图 1:案例 1 的测量设置。(图片来源:Qoitech AB)

对于图 1 所示设置,DUT 每 30 秒测量一次温度、湿度和光照,使用 10 个这样的周期求取均值。总效率值是通过加权电池将保持在既定电压电平的时间来计算,参见图 2,其中,电池估计会在 9% 的时间处于 1.5 V 电压,8% 时间处于 1.4 V 电压,等等。这不完全正确,但对这个案例来讲是适当的估计。

图 2:AAA 电池放电曲线。(图片来源:Qoitech AB)

举报

刘艳

2019-1-16 14:09:11
案例 2

一个供电 Otii 充当电池,扫描电压从 1.5 V 到 0.9 V。这个供电 Otii 也负责测量。另一个 Otii 充当可编程恒流负载,从 1 mA 开始,然后是 3 mA、5 mA、10 mA、30 mA、50 mA,最后到 90 mA(DC/DC 转换器上限为 100 mA)。
图 3:案例 2 的测量设置。(图片来源:Qoitech AB)

供电 Otii 通过将输出能量(Otii 扩展端口 ADC 测量电流和电压)除以输入能量(Otii 主电流和电压)来测量效率。通常是将输出电压乘以输出电流,再除以输入电压乘以输入电流,但由于 Otii 能计算并显示能量,所以使用能量要简单得多。

Otii 工具还支持使用 SENSE+ 和 SENSE- 输入,通过四端子检测方法测量输入和输出电压。这里不讨论这种方法,原因是电流相当低,而且连接 Otii 所用的电缆很短,电阻很小。

两个 Otii(或所连接的多个 Otii)及所有测量结果(主电流、主电压、扩展端口 ADC 电流、扩展端口 ADC 电压、SENSE+、SENSE- 等)都会在同一窗口中提供,因此非常方便显示所产生的数据。
举报

李刚

2019-1-16 14:10:26
这些案例中使用了三种不同的 Texas Instruments DC/DC 转换器。
  • TPS61097A-33DBVT
  • TLV61220DBVR
  • TPS61221DCKT


如前所述,测量的是 DUT 的 10 个周期,即每个电池电压持续 10 x 30 秒 = 5 分钟。图 4 显示了 TPS91097A-33DVBT DC/DC 的屏幕截图。
图 4:案例 1 Otii 测量,TPS91097A-33DVBT。(图片来源:Qoitech AB)


Otii 工具让效率计算变得非常简单,只需将输出能量除以输入能量即可,然后根据案例 1 测量设置中的说明对该效率值进行加权。图 5 为所有三个 DC/DC 转换器提供了一个概览。
图 5:不同 DC/DC 的效率计算。(图片来源:Qoitech AB)


此计算也可以使用 lua 脚本 在 Otii 中自动完成,但为了更加直观,图 5 使用 Excel 表进行了展示。


使用小型 4.7 μH 片式电感器时,三个 DC/DC 转换器的性能几乎相同。为了继续研究 DC/DC,使用不同的电感器来了解效率是否有所提高。选择了三种不同的 Bourns 电感器和一种 Murata 电感器。


  • 4.7 µH (Murata)
  • 4.7 µH (Bourns)
  • 12 µH (Bourns)
  • 22 µH (Bourns)


22 μH 电感器对于这种应用而言太大,但了解相应的性能很有意思。
使用与之前相同的设置,选择 TPS61097A-33DBVT 作为 DC/DC 转换器,电感器作为变量(图 6)。
图 6:不同电感器的效率计算。(图片来源:Qoitech AB)


结果同预期一样,电感器越大且其电阻越低,则 DC/DC 解决方案的效率越高。然而,22 μH 的大电感器是不可取的。


为了更多地了解 DC/DC 转换器的特性,使用案例 2 来获得 DC/DC 转换器在一系列输入电压和负载下更深入的特征化。


首先,图 7 显示了 22 μH 大电感对应的测量结果。图 8 显示了对其他电感的相同分析。
图 7:案例 2,使用 22 μH 大电感的 TPS61097A-33DVBT Otii 测量。(图片来源:Qoitech AB)


受电 Otii 从吸收 1 mA 开始,然后是 3 mA、5 mA、10 mA、30 mA、50 mA,最后是 90 mA。对所有电池电压重复此操作。


从图 7 中可以看出,对于较低的输入电压,DC/DC 无法处理 90 mA。DC/DC 无法针对这些低电压进行调节,并开始振荡。


数据存储在 .csv 文件中,供 Matlab 导入以便进行分析和绘图。图 8 绘出了效率与输出电流的关系。
图 8:显示不同电感对应 DC/DC 效率的 Matlab 图形(图片来源:Qoitech AB)
这个方法非常好,能够查看 DC/DC 转换器在不同负载条件下的特性。

举报

李涛

2019-1-16 14:11:32
Otii 是一个非常有用的工具,可以轻松分析 DC/DC 转换器的效率,既适合在目标系统中使用,也可用来实现完整的特征化。

分析所采用的简单系统中,三种 TI DC/DC 转换器的性能非常相似;之所以选择 TPS61097A-33DBVT,只是因为它采用了 SOT23-5 封装。关于电感器选择,应选择 12 μH 电感器,因为它具有更高的效率,并且有足够的空间来使用它。

举报

王栋春

2019-1-16 22:38:57
了解一下
举报

xinjihua

2019-3-27 09:12:40
资料不错  感谢楼主分享
举报

更多回帖

发帖
×
20
完善资料,
赚取积分