智能工厂作为工业智能化发展的重要实践模式,已经引发行业的广泛关注。到底什么是智能工厂?智能工厂的核心架构是怎样的?能为企业的转型提供哪些支撑?这都是企业比较关心的话题。
智能工厂、数字化工厂与智能制造
不可忽视的是,往往很多企业在提及这些概念时,容易将这些概念混为一谈,数字化工厂、智能工厂以及智能制造之间到底是否可以互相替换,这些概念之间是否存在区别?
数字化工厂
对于数字化工厂,德国工程师协会的定义是:
数字化工厂(DF)是由数字化模型、方法和工具构成的综合网络,包含仿真和3D/虚拟现实可视化,通过连续的没有中断的数据管理集成在一起。数字化工厂集成了产品、过程和工厂模型数据库,通过先进的可视化、仿真和文档管理,以提高产品的质量和生产过程所涉及的质量和动态性能。
在国内,对于数字化工厂接受度最高的定义是:
数字化工厂是在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式。是现代数字制造技术与计算机仿真技术相结合的产物,主要作为沟通产品设计和产品制造之间的桥梁。从定义中可以得出一个结论,数字化工厂的本质是实现信息的集成。
智能工厂
智能工厂是在数字化工厂的基础上,利用物联网技术和监控技术加强信息管理服务,提高生产过程可控性、减少生产线人工干预,以及合理计划排程。同时,集初步智能手段和智能系统等新兴技术于一体,构建高效、节能、绿色、环保、舒适的人性化工厂。
智能工厂已经具有了自主能力,可采集、分析、判断、规划;通过整体可视技术进行推理预测,利用仿真及多媒体技术,将实境扩增展示设计与制造过程。系统中各组成部分可自行组成最佳系统结构,具备协调、重组及扩充特性。已系统具备了自我学习、自行维护能力。因此,智能工厂实现了人与机器的相互协调合作,其本质是人机交互。
智能制造
智能工厂是在数字化工厂基础上的升级版,但是与智能制造还有很大差距。
智能制造系统在制造过程中能进行智能活动,诸如分析、推理、判断、构思和决策等。通过人与智能机器的合作,去扩大、延伸和部分地取代技术专家在制造过程中的脑力劳动。它把制造自动化扩展到柔性化、智能化和高度集成化。
智能制造系统不只是“人工智能系统,而是人机一体化智能系统,是混合智能。系统可独立承担分析、判断、决策等任务,突出人在制造系统中的核心地位,同时在智能机器配合下,更好发挥人的潜能。机器智能和人的智能真正地集成在一起,互相配合,相得益彰。本质是人机一体化。
智能工厂核心架构
工业4.0是什么?每个人站在不同的角度会有不同的理解,是互联、集成(纵向、横向、端到端)、数据、创新、服务、转型或是CPS、是智能工厂、是智能制造亦或是国家战略、企业目标。工业4.0核心内容就是建一个网络、三项集成、大数据分析、八项计划和研究两个主题。
建一个网络(CPS)
CPS让物理设备具有计算、通信、精确控制、远程协调和自治等五大功能,从而实现虚拟网络世界与现实物理世界的融合,将网络空间的高级计算能力有效的运用于现实世界中,从而在生产制造过程中,与设计、开发、生产有关的所有数据将通过传感器采集并进行分析,形成可自律操作的智能生产系统。
工业4.0中的三项集成包括:横向集成、纵向集成与端对端的集成。
工业4.0将无处不在的传感器、嵌入式终端系统、智能控制系统、通信设施通过CPS形成一个智能网络,使人与人、人与机器、机器与机器以及服务与服务之间能够互联,从而实现横向、纵向和端对端的高度集成,集成是实现工业4.0的重点也是难点。
数据处理:大数据分析
随着信息物理系统的推广,智能装备和终端的普及以及各种各样传感器的使用,将会带来无所不在的感知和无所不在的连接,所有的生产装备、感知设备、联网终端,包括生产者本身都在源源不断地产生数据,这些数据将会渗透到企业运营、价值链乃至产品的整个生命周期,是工业4.0和制造革命的基石。
总体来说,工业4.0关注的企业数据分为四类:产品相关的数据,俗称企业主数据,运营数据,一般称为交易数据,整个价值链上的数据,如供应商、分销商、客户等数据,也是属于企业主数据管理的范畴对企业经营分析有价值的外部数据。