可穿戴设备
尺寸和形状:鉴于尺寸和重量的限制,选择传感器时首先要考虑的就是尺寸和形状。无论规格多么惊艳,如果在机箱内部不适合,那就不可行,任何不必要的重量都会影响用户体验。
功耗:许多小型传感器专为电池供电的小型应用而设计,功耗在这些应用中至关重要。应寻找 5 mm x 5 mm 或更小的传感器。
精度和分辨率:了解应用的精度和分辨率要求,然后选择能够轻松满足这些要求的传感器。这可以简化开发和节省时间。此外,还可以使设备容纳可能需要的固件更新,以便在出现问题或需求发生变化时提高精度。对于大多数可穿戴设备而言,12 位或更高分辨率很常见。
微控制器接口:了解传感器如何与微控制器连接。存在模拟和数字两种类型的接口。模拟接口输出与被感测环境行为的值成比例的电压。模拟接口在可穿戴式应用中的使用有限,因为它们需要微控制器来使用高耗电的模数转换器 (ADC) 或比较器。串行数字接口才是首选,例如 I2C 或 SPI。许多现代传感器提供两种接口。
如要根据上述标准,从所有可用供应商处找到正确的传感器,可能非常耗时。但是,Digi-Key Electronics 等授权分销商通过为传感器选择提供在线资源,简化了这一过程。例如,Digi-Key 的加速计在线选择页面极大地简化了依照标准选择传感器的过程,将原来需要一个下午的采购变为几分钟就能完成的工作。
一些供应商,如 Bosch Sensortec,拥有专门针对可穿戴设备的整个产品线。这些产品线具有功耗低、尺寸小和模式灵活的特性,可实现精度与功率的平衡。
例如,Bosch Sensortec BMA423 是一款 3 轴、12 位加速计,采用 12 引脚 LGA 封装,尺寸为 2 mm x 2 mm(图 1)。它可以配置为支持 SPI 或 I2C 接口,可编程加速度范围为 ±2 g、±4 g、±8 g 和 ±16 g。
BMA423 可谓是“智能传感器”,因为它采用内部加速计的原始数据并在内部处理数据,从而为开发人员提供有用的结果。这可为微控制器减掉一些负载并加快开发速度。当在可穿戴健身应用中使用时,它可以检测用户是静止不动、跑步还是走路。
图 1:Bosch Sensortec BMA423 是一款适用于可穿戴设备的小型 3 轴 12 位加速计,基底面 2 mm x 2 mm,高度 0.95 mm。(图片来源:Bosch Sensortec)
BMA423 设计用于最大限度地减少外部元器件数量,如图 2 所示。为了提高抗噪性,建议在 VDDIO 和接地之间以及 VDD 和接地之间使用 100 纳法 (nF) 去耦电容器。省去这些电容器可以节省宝贵的空间,但可能会损失精度。
图 2:Bosch BMA423 3 轴加速计设计用于最大程度地减少部件数量,并在使用 I2C 接口时简化电路板布局。(图片来源:Bosch Sensortec)
Bosch Sensortec 为其所有传感器提供固件。在给 BMA423 上电时,它会经历一个内部上电复位 (POR) 序列。在系统 POR 之后,微控制器应运行 Bosch 的 BMA423 初始化程序,以正确配置芯片。
初始化程序首先读取内部芯片 ID,并把该 ID 与存储在固件中的芯片 ID 进行比较。这将验证 BMA423 是否可用并与微控制器正确通信。接下来,初始化程序运行短自检以验证能否正常运行,自检结果被发送回微控制器。设备初始化后,会处于性能模式,这是传感器的最高功率和最高性能状态。
BMA423 具有许多用于低功耗运行的特性,包括 1024 字节宽的 FIFO。这让加速计能够在微控制器处于低功耗或休眠模式时检测和存储数据。由于不需要微控制器不断地与 BMA423 通信,这在非实时应用中节省了功耗。一旦 FIFO 中的加速计数据达到预编程的 FIFO 级别,就会产生中断以唤醒微控制器,然后微控制器转而执行驱动子程序以读取 FIFO 数据。
BMA423 的最低功耗模式是挂起模式。在挂起模式期间,不执行内部加速计测量,同时保持 FIFO 和内部寄存器的状态。
为了降低非实时应用中的运行功耗,应将 BMA423 置于低功耗模式而不是默认的性能模式。这会关闭 BMA423 的各个部分,包括外部 I2C 和 SPI 接口,同时将数据记录到 FIFO 中。在低功耗模式下,BMA423 会根据固件编程占空比设定的采样率在性能模式和休眠模式之间定期切换。采样率越低,BMA423 的功耗越低。调整此占空比可针对传感器功耗调整所需的精度。
在健身可穿戴式应用中使用 BMA423 时,使用中断特性引擎可以简化开发。它就像一个计步器,可以自动检测步数,并检测用户是走路、跑步还是静止不动。它还可以检测用户是否倾斜可穿戴设备,检测设备上的双击或单击震动,或检测设备是否在移动。使用特性引擎而不是编写自定义代码可简化开发。
对于精度要求极高、更复杂的可穿戴应用,可以使用惯性测量装置 (IMU) 传感器。IMU 在一个封装中集成了加速计和陀螺仪。Bosch Sensortec BMI160 IMU 在一个封装中集成了一个 3 轴 16 位微机电系统 (MEMS) 加速计和一个 3 轴 16 位 MEMS 陀螺仪。IMU 加速计执行 BMA423 的所有功能,而陀螺仪使设备可以检测运动方向。这让 BMI160 能够确定相对位置、距离和速度,但功耗低于 GPS。但是,它通常用于在更先进的可穿戴设备中增强 GPS。在此类应用中,GPS 提供绝对定位和位置信息,但是如果 GPS 信号消失,IMU 可以跟踪运动和加速度,直到重新获取 GPS 信号。
BMI160 的封装类似于 BMA423,但基底面为 2.5 mm x 3.0 mm,高度为 0.83 mm。与 BMA423 一样,它也支持 I2C 和 SPI 接口,并具有一个 1024 字节 FIFO。
使用 IMU 进行航位推算加速计无法感应恒定速度,只能感知速度的变化。但是,可以通过获取加速度数据随时间的积分来计算速度。为了获得可接受的精度,需要具有 16 位或更高分辨率的加速计。采样率越高,速度估计越准确,然后可以用来计算行程距离。过去,使用消费级 IMU 估算速度和距离,经常会引入随时间累积的小误差。但是,MEMS 传感器在现代取得了进步,使用消费级 IMU 进行航位推算变得更加实用。
与 BMA423 一样,BMI160 加速计也可以检测用户是走路、跑步还是静止不动。通过结合根据加速计读数计算的行程距离和根据陀螺仪读数计算的移动方向,传感器融合计算可以确定装置的位置。
为了加快开发速度,可下载适用于 ARM™ 微控制器的 Bosch Sensortec 环境集群 (BSEC) 融合库。这是一个与 NXP Semiconductors 的 LPCXpresso™ LPC54102 传感器处理/运动评估板兼容的完整传感器融合套件。该电路板提供评估多种 Bosch Sensortec MEMS 传感器的选项,最新包括了 BMI160。
图 3:NXP LPC54102 传感器处理/运动评估板可用于评估许多 Bosch Sensortec MEMS 传感器,包括 BMI160。(图片来源:Bosch Sensortec)
NXP LPC54102 附带 BSEC 融合库。该评估板可通过 USB 连接器或外部电源供电。要完成开发,首先要在 PC 上安装附带的 LPCXpresso 软件。通过启动 LPCXpresso 软件并按照简单的屏幕说明操作,完成 LPC5102 的连接。连接后,就可以下载并安装 BMI160 演示程序。
可穿戴设备和电池随着可穿戴设备变得更小和功能更强大,电池供应商面临着生产更小和更高容量电池的挑战。tinyCircuits 制造两种适用于可穿戴设备的小型电池。TinyCircuits ASR00011 是一款额定容量为 70 mAh 的 3.7 伏锂离子电池。它具有 4.2 伏的满充电压,并完全放电后可低至 3.0 伏。电池使用微型 JST SH 2 针 1.25 mm 母头连接器(图 4)。
图 4:紧凑型 TinyCircuits ASR00011 3.7 伏锂离子电池尺寸为 16.0 mm x 15.0 mm x 5.0 mm,重量为 1.65 克,小到足以用于健身手表。(图片来源:TinyCircuits)
如果需要更大电池容量,TinyCircuits ASR00008 3.7 伏锂离子电池的额定容量为 1100 mAh。尺寸为 42.0 mm x 39.0 mm x 5.5 mm,对于健身手表来说太大,但适合健康监视器。
总结可穿戴设备给开发人员带来了独特的挑战,需要在小尺寸中兼具精确的传感器和低功耗的特点。电子元器件供应商专门为可穿戴设备制造器件,使元器件选择更容易,同时为智能传感器提供各种可加快设计速度的特性。
更多回帖