N-API 是 Node.js Addon Programming Interface 的缩写,是 Node.js 提供的一组 C++ API,封装了V8 引擎的能力,用于编写 Node.js 的 Native 扩展模块。通过 N-API,开发者可以使用 C++ 编写高性能的 Node.js 模块,同时保持与 Node.js 的兼容性。
Node.js 官网中已经给出 N-API 接口基础能力的介绍,同时,方舟 ArkTS 运行时提供的 N-API 接口,封装了方舟引擎的能力,在功能上与 Node.js 社区保持一致,这里不再赘述。
本文将结合应用开发场景,分别从对象生命周期管理、跨语言调用开销、异步操作和线程安全四个角度出发,给出安全、高效的 N-API 开发指导。
在进行 N-API 调用时,引擎堆中对象的句柄 handle 会作为 napi_value 返回,对象的生命周期由这些句柄控制。对象的句柄会与一个 scope 保持一致,默认情况下,对象当前所在 native 方法是 handle 的 scope。在应用 native 模块实际开发过程中,需要对象有比当前所在 native 方法更短或更长的 scope。本文描述了管理对象生命周期的 N-API 接口,开发者通过这些接口可以合理的管理对象生命周期,满足业务诉求。
合理使用 napi_open_handle_scope 和 napi_close_handle_scope 管理 napi_value 的生命周期,做到生命周期最小化,避免发生内存泄漏问题。
例如,考虑一个具有 for 循环的方法,在该循环中遍历获取大型数组的元素,示例代码如下:
for (int i = 0; i < 1000000; i++) {
napi_value result;
napi_status status = napi_get_element(env, object, i, &result);
if (status != napi_ok) {
break;
}
// do something with element
}
在 for 循环中会创建大量的 handle,消耗大量资源。为了减小内存开销,N-API 提供创建局部 scope 的能力,在局部 scope 中间所创建 handle 的生命周期将与局部 scpoe 保持一致。一旦不再需要这些 handle,就可以直接关闭局部 scope。
例如,使用下面的方法,可以确保在循环中,最多只有一个句柄是有效的:
// 在for循环中频繁调用napi接口创建js对象时,要加handle_scope及时释放不再使用的资源;
// 下面例子中,每次循环结束局部变量res的生命周期已结束,因此加scope及时释放其持有的js对象,防止内存泄漏。
for (int i = 0; i < 1000000; i++) {
napi_handle_scope scope;
napi_status status = napi_open_handle_scope(env, &scope);
if (status != napi_ok) {
break;
}
napi_value result;
status = napi_get_element(env, object, i, &result);
if (status != napi_ok) {
break;
}
// do something with element
status = napi_close_handle_scope(env, scope);
if (status != napi_ok) {
break;
}
}
存在一些场景,某些对象的生命周期需要大于对象本身所在区域的生命周期,例如嵌套循环场景。开发者可以通过 napi_open_escapable_handle_scope 与 napi_close_escapable_handle_scope 管理对象的生命周期,在此期间定义的对象的生命周期将与父作用域的生命周期保持一致。
开发者可以通过创建 napi_ref 来延长 napi_value 对象的生命周期,通过 napi_create_reference 创建的对象需要用户手动调用 napi_delete_reference 释放,否则可能造成内存泄漏。
通过 napi_define_class 创建一个 constructor 并保存下来,后续可以通过保存的 constructor 调用 napi_new_instance 来创建实例。但是,如果 constructor 是以 napi_value 的形式保存下来,一旦超过了 native 方法的 scope,这个 constructor 就会被析构,后续再使用就会造成野指针。推荐写法如下:
// 1、开发者可以改用 napi_ref 的形式把 constructor 保存下来
static napi_value TestDefineClass(napi_env env,
napi_callback_info info) {
napi_status status;
napi_value result, return_value;
napi_property_descriptor property_descriptor = {
"TestDefineClass",
NULL,
TestDefineClass,
NULL,
NULL,
NULL,
napi_enumerable | napi_static,
NULL};
NODE_API_CALL(env, napi_create_object(env, &return_value));
status = napi_define_class(NULL,
"TrackedFunction",
NAPI_AUTO_LENGTH,
TestDefineClass,
NULL,
1,
&property_descriptor,
&result);
SaveConstructor(env, result);
...
}
// 2、由开发者自己管理 constructor 对象的生命周期
napi_status SaveConstructor(napi_env env, napi_value constructor) {
return napi_create_reference(env, constructor, 1, &g_constructor);
};
napi_status GetConstructor(napi_env env) {
napi_value constructor;
return napi_get_reference_value(env, g_constructor, &constructor);
};
开发者使用 napi_wrap 接口,可以将 native 对象和 js 对象绑定,当 js 对象被 GC 回收时,需要通过回调函数对 native 对象的资源进行清理。napi_wrap 接口本质上也是创建了一个 napi_ref,开发者可以根据业务需要,选择由系统来管理创建的 napi_ref,或是自行释放创建的 napi_ref。
// 用法1:napi_wrap不需要接收创建的napi_ref,最后一个参数传递nullptr,创建的napi_ref由系统管理,不需要用户手动释放
napi_wrap(env, jsobject, nativeObject, cb, nullptr, nullptr);
// 用法2:napi_wrap需要接收创建的napi_ref,最后一个参数不为nullptr,返回的napi_ref需要用户手动释放,否则会内存泄漏
napi_ref result;
napi_wrap(env, jsobject, nativeObject, cb, nullptr, &result);
// 当jsobject和result后续不再使用时,及时调用napi_remove_wrap释放result
napi_value result1;
napi_remove_wrap(env, jsobject, result1)
跨语言调用是指在一个程序中使用多种编程语言编写的代码,并且这些代码可以相互调用和交互,ArkTS 调用 C++ 就是一种跨语言调用的方式。使用 N-API 进行函数调用会引入一定的开销,因为需要进行上下文切换、参数传递、函数调用和返回值处理等,这些过程都涉及到一些性能开销。目前,通过 N-API 接口实现 ArkTS 调用 C++ 的场景大致分为三类:ArkTS 直接调用 C++ 接口、ArkTS 监听 C++ 接口以及 ArkTS 接收 C++ 回调。频繁的跨语言接口调用可能会影响业务性能,因此需要开发者合理的设计接口调用频率。
使用 N-API 进行 ArkTS 与 C++ 之间的数据转换,有如下建议:
对于IO、CPU密集型任务需要异步处理, 否则会造成主线程的阻塞。N-API 支持异步能力,允许应用程序在执行某个耗时任务时不会被阻塞,而是继续执行其他任务。当异步操作完成时,应用程序会收到通知,并可以处理异步操作的结果。
开发者可以通过如下示例将耗时任务用异步方式实现,大概逻辑包括以下三步:
// 在executeCB、completeCB之间传递数据
struct AddonData {
napi_async_work asyncWork = nullptr;
napi_deferred deferred = nullptr;
napi_ref callback = nullptr;
double args[2] = {0};
double result = 0;
};
// 2、执行耗时任务,并将执行结果传递给 promise;
static void addExecuteCB(napi_env env, void *data) {
AddonData *addonData = (AddonData *)data;
addonData->result = addonData->args[0] + addonData->args[1];
};
// 3、使用 napi_resolve_deferred 或 napi_reject_deffered 接口来 resolve 或 reject 创建的 promise,并释放 deferred 对象;
static void addPromiseCompleteCB(napi_env env, napi_status status, void *data) {
AddonData *addonData = (AddonData *)data;
napi_value result = nullptr;
napi_create_double(env, addonData->result, &result);
napi_resolve_deferred(env, addonData->deferred, result);
if (addonData->callback != nullptr) {
napi_delete_reference(env, addonData->callback);
}
// 删除异步 work
napi_delete_async_work(env, addonData->asyncWork);
delete addonData;
addonData = nullptr;
};
// 1、用 napi_create_promise 接口创建 promise,将创建一个 deferred 对象并与 promise 一起返回,deferred
// 对象会绑定到已创建的 promise;
static napi_value addPromise(napi_env env, napi_callback_info info) {
size_t argc = 2;
napi_value args[2];
napi_value thisArg = nullptr;
napi_get_cb_info(env, info, &argc, args, &thisArg, nullptr);
napi_valuetype valuetype0;
napi_typeof(env, args[0], &valuetype0);
napi_valuetype valuetype1;
napi_typeof(env, args[1], &valuetype1);
if (valuetype0 != napi_number || valuetype1 != napi_number) {
napi_throw_type_error(env, nullptr, "Wrong arguments. 2 numbers expected.");
return NULL;
}
napi_value promise = nullptr;
napi_deferred deferred = nullptr;
napi_create_promise(env, &deferred, &promise);
// 异步工作项上下文用户数据,传递到异步工作项的execute、complete之间传递数据
auto addonData = new AddonData{
.asyncWork = nullptr,
.deferred = deferred,
};
napi_get_value_double(env, args[0], &addonData->args[0]);
napi_get_value_double(env, args[1], &addonData->args[1]);
// 创建async work,创建成功后通过最后一个参数(addonData->asyncWork)返回async work的handle
napi_value resourceName = nullptr;
napi_create_string_utf8(env, "addAsyncCallback", NAPI_AUTO_LENGTH, &resourceName);
napi_create_async_work(env, nullptr, resourceName, addExecuteCB, addPromiseCompleteCB, (void *)addonData,
&addonData->asyncWork);
// 将刚创建的async work加到队列,由底层去调度执行
napi_queue_async_work(env, addonData->asyncWork);
return promise;
}
在异步操作完成后,回调函数将被调用,并将结果传递给 Promise 对象。在 JavaScript 中,可以使用 Promise 对象的 then() 方法来处理异步操作的结果。
import hilog from '@ohos.hilog';
import testNapi from 'libentry.so'
@Entry
@Component
struct TestAdd {
build() {
Flex({ direction: FlexDirection.Column, alignItems: ItemAlign.Center, justifyContent: FlexAlign.Center }) {
Text("hello world")
.onClick(() => {
let num1 = 2;
let num2 = 3;
testNapi.addPromise(num1, num2).then((result) => {
hilog.info(0x0000, 'testTag', '%{public}d', result);
})
})
}
.width('100%')
.height('100%')
}
}
Function Flow 编程模型(Function Flow Runtime,FFRT)是一种基于任务和数据驱动的并发编程模型,允许开发者通过任务及其依赖关系描述的方式进行应用开发。方舟 ArkTS 运行时提供了扩展 qos 信息的接口,支持传入 qos,并调用 FFRT,根据系统资源使用情况降低功耗、提升性能。
typedef enum {
napi_qos_background = 0,
napi_qos_utility = 1,
napi_qos_default = 2,
napi_qos_user_initiated = 3,
} napi_qos_t;
static void PromiseOnExec(napi_env env, void *data) {
OH_LOG_INFO(LOG_APP, "PromiseOnExec");
}
static void PromiseOnComplete(napi_env env, napi_status status, void *data) {
int number = *((int *)data);
OH_LOG_INFO(LOG_APP, "PromiseOnComplete number = %{public}d", number);
}
static napi_value Test(napi_env env, napi_callback_info info) {
napi_value resourceName = nullptr;
napi_create_string_utf8(env, "TestExample", NAPI_AUTO_LENGTH, &resourceName);
napi_async_work async_work;
int *data = new int(10);
napi_create_async_work(env, nullptr, resourceName, PromiseOnExec, PromiseOnComplete, data, &async_work);
napi_queue_async_work_with_qos(env, async_work, napi_qos_default);
return nullptr;
}
如果应用需要进行大量的计算或者 IO 操作,使用并发机制可以充分利用多核 CPU 的优势,提高应用的处理效率。例如,图像处理、视频编码、数据分析等应用可以使用并发机制来提高处理速度。
虽然 N-API 本身不支持多线程并发操作,但是可以在多线程环境下进行一些数据交互,且需要格外注意线程安全。在多线程环境下,开发者可以使用 napi_create_threadsafe_function 函数创建一个线程安全函数,然后在任意线程中调用。 应用场景 :当 native 侧有其他线程,并且需要根据这些线程的完成结果调用 JavaScript 函数时,这些线程必须与 native 侧的主线程进行通信,才能在主线程中调用 JavaScript 函数。线程安全函数便提供了一种简化方法,避免了线程间通讯,同时可以回到主线程调用 JavaScript 函数。
struct Index {
@State message: string = 'Hello World'
build() {
Row() {
Column() {
Text(this.message)
.fontSize(50)
.fontWeight(FontWeight.Bold)
.onClick(() => {
testNapi.threadSafeTest((value) => {
hilog.info(0x0000, 'testTag', 'js callback value = ' + value);
})
})
}
.width('100%')
}
.height('100%')
}
}
static void CallJs(napi_env env, napi_value js_cb, void *context, void *data) {
std::thread::id this_id = std::this_thread::get_id();
OH_LOG_INFO(LOG_APP, "thread CallJs %{public}d.\\n", this_id);
napi_status status;
status = napi_get_reference_value(env, cbObj, &js_cb);
napi_valuetype valueType = napi_undefined;
napi_typeof(env, js_cb, &valueType);
OH_LOG_INFO(LOG_APP, "CallJs js_cb is napi_function: %{public}d", valueType == napi_function);
OH_LOG_INFO(LOG_APP, "CallJs 0");
if (env != NULL) {
napi_value undefined, js_the_prime;
status = napi_create_int32(env, 666, &js_the_prime);
OH_LOG_INFO(LOG_APP, "CallJs 1: %{public}d", status == napi_ok);
status = napi_get_undefined(env, &undefined);
OH_LOG_INFO(LOG_APP, "CallJs 2: %{public}d", status == napi_ok);
napi_value ret;
status = napi_call_function(env, undefined, js_cb, 1, &js_the_prime, &ret);
OH_LOG_INFO(LOG_APP, "CallJs 3: %{public}d", status == napi_ok);
}
}
napi_threadsafe_function tsfn;
static napi_value ThreadSafeTest(napi_env env, napi_callback_info info) {
size_t argc = 1;
napi_value js_cb, work_name;
napi_status status;
status = napi_get_cb_info(env, info, &argc, &js_cb, NULL, NULL);
OH_LOG_INFO(LOG_APP, "ThreadSafeTest 0: %{public}d", status == napi_ok);
status = napi_create_reference(env, js_cb, 1, &cbObj);
OH_LOG_INFO(LOG_APP, "napi_create_reference of js_cb to cbObj: %{public}d", status == napi_ok);
status =
napi_create_string_utf8(env, "Node-API Thread-safe Call from Async Work Item", NAPI_AUTO_LENGTH, &work_name);
OH_LOG_INFO(LOG_APP, "ThreadSafeTest 1: %{public}d", status == napi_ok);
std::thread::id this_id = std::this_thread::get_id();
OH_LOG_INFO(LOG_APP, "thread ThreadSafeTest %{public}d.\\n", this_id);
napi_valuetype valueType = napi_undefined;
napi_typeof(env, js_cb, &valueType);
OH_LOG_INFO(LOG_APP, "ThreadSafeTest js_cb is napi_function: %{public}d", valueType == napi_function);
status = napi_create_threadsafe_function(env, js_cb, NULL, work_name, 0, 1, NULL, NULL, NULL, CallJs, &tsfn);
OH_LOG_INFO(LOG_APP, "ThreadSafeTest 2: %{public}d", status == napi_ok);
}
std::thread t([]() {
std::thread::id this_id = std::this_thread::get_id();
OH_LOG_INFO(LOG_APP, "thread0 %{public}d.\\n", this_id);
napi_status status;
status = napi_acquire_threadsafe_function(tsfn);
OH_LOG_INFO(LOG_APP, "thread1 : %{public}d", status == napi_ok);
status = napi_call_threadsafe_function(tsfn, NULL, napi_tsfn_blocking);
OH_LOG_INFO(LOG_APP, "thread2 : %{public}d", status == napi_ok);
});
t.detach();
在多线程环境下,需要避免使用共享的数据结构和全局变量,以免竞争和冲突。同时,需要确保线程之间的同步和互斥,以避免数据不一致的情况发生。除此之外,仍需注意:
如果大家觉得这篇内容对学习鸿蒙开发有帮助,我想邀请大家帮我三个小忙:
点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
关注小编,同时可以期待后续文章ing?,不定期分享原创知识。
更多鸿蒙最新技术知识点,请关注作者博客:鸿蒙实战经验分享:鸿蒙基础入门开发宝典! (qq.com)