完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
扫一扫,分享给好友
下边是其程序: function [center, U, obj_fcn] = FCMClust(data, cluster_n, options) % FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类 % % 用法: % 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options); % 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster); % % 输入: % data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值 % N_cluster ---- 标量,表示聚合中心数目,即类别数 % options ---- 4x1矩阵,其中 % options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0) % options(2): 最大迭代次数 (缺省值: 100) % options(3): 隶属度最小变化量,迭代终止条件 (缺省值: 1e-5) % options(4): 每次迭代是否输出信息标志 (缺省值: 1) % 输出: % center ---- 聚类中心 % U ---- 隶属度矩阵 % obj_fcn ---- 目标函数值 % Example: % data = rand(100,2); % [center,U,obj_fcn] = FCMClust(data,2); % plot(data(:,1), data(:,2),'o'); % hold on; % maxU = max(U); % index1 = find(U(1,:) == maxU); % index2 = find(U(2,:) == maxU); % line(data(index1,1),data(index1,2),'marker','*','color','g'); % line(data(index2,1),data(index2,2),'marker','*','color','r'); % plot([center([1 2],1)],[center([1 2],2)],'*','color','k') % hold off; if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个 error('Too many or too few input arguments!'); end data_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数 in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度 % 默认操作参数 default_options = [2; % 隶属度矩阵U的指数 100; % 最大迭代次数 1e-5; % 隶属度最小变化量,迭代终止条件 1]; % 每次迭代是否输出信息标志 if nargin == 2, options = default_options; else %分析有options做参数时候的情况 % 如果输入参数个数是二那么就调用默认的option; if length(options) < 4, %如果用户给的opition数少于4个那么其他用默认值; tmp = default_options; tmp(1:length(options)) = options; options = tmp; end % 返回options中是数的值为0(如NaN),不是数时为1 nan_index = find(isnan(options)==1); %将denfault_options中对应位置的参数赋值给options中不是数的位置. options(nan_index) = default_options(nan_index); if options(1) <= 1, %如果模糊矩阵的指数小于等于1 error('The exponent should be greater than 1!'); end end %将options 中的分量分别赋值给四个变量; expo = options(1); % 隶属度矩阵U的指数 max_iter = options(2); % 最大迭代次数 min_impro = options(3); % 隶属度最小变化量,迭代终止条件 display = options(4); % 每次迭代是否输出信息标志 obj_fcn = zeros(max_iter, 1); % 初始化输出参数obj_fcn U = initfcm(cluster_n, data_n); % 初始化模糊分配矩阵,使U满足列上相加为1, % Main loop 主要循环 for i = 1:max_iter, %在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值; [U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo); if display, fprintf('FCM:Iteration count = %d, obj. fcn = %fn', i, obj_fcn(i)); end % 终止条件判别 if i > 1, if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro, break; end, end end iter_n = i; % 实际迭代次数 obj_fcn(iter_n+1:max_iter) = []; % 子函数 function U = initfcm(cluster_n, data_n) % 初始化fcm的隶属度函数矩阵 % 输入: % cluster_n ---- 聚类中心个数 % data_n ---- 样本点数 % 输出: % U ---- 初始化的隶属度矩阵 U = rand(cluster_n, data_n); col_sum = sum(U); U = U./col_sum(ones(cluster_n, 1), :); % 子函数 function [U_new, center, obj_fcn] = stepfcm(data, U, cluster_n, expo) % 模糊C均值聚类时迭代的一步 % 输入: % data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值 % U ---- 隶属度矩阵 % cluster_n ---- 标量,表示聚合中心数目,即类别数 % expo ---- 隶属度矩阵U的指数 % 输出: % U_new ---- 迭代计算出的新的隶属度矩阵 % center ---- 迭代计算出的新的聚类中心 % obj_fcn ---- 目标函数值 mf = U.^expo; % 隶属度矩阵进行指数运算结果 center = mf*data./((ones(size(data, 2), 1)*sum(mf'))'); % 新聚类中心(5.4)式 dist = distfcm(center, data); % 计算距离矩阵 obj_fcn = sum(sum((dist.^2).*mf)); % 计算目标函数值 (5.1)式 tmp = dist.^(-2/(expo-1)); U_new = tmp./(ones(cluster_n, 1)*sum(tmp)); % 计算新的隶属度矩阵 (5.3)式 % 子函数 function out = distfcm(center, data) % 计算样本点距离聚类中心的距离 % 输入: % center ---- 聚类中心 % data ---- 样本点 % 输出: % out ---- 距离 out = zeros(size(center, 1), size(data, 1)); for k = 1:size(center, 1), % 对每一个聚类中心 % 每一次循环求得所有样本点到一个聚类中心的距离 out(k, :) = sqrt(sum(((data-ones(size(data,1),1)*center(k,:)).^2)',1)); end |
|
相关推荐
6个回答
|
|
|
|
|
|
|
|
|
我就是直接粘的程序。怎么定义函数啊?这个程序我需要试着运行一下,我还收集了一些数据,看看能不能达到想要的效果。要是想成功运行的话需要怎么定义,兄弟一定要帮我一下,我是新手。 |
|
|
|
|
|
新建 . m 文件,然后把程序贴到那个文件里,保存,然后再调用这个函数, [center, U, obj_fcn] = FCMClust(data, cluster_n, options)
这里data , cluster, options 是一些具有实际数值的变量,经过函数计算,结果就会保存到 center, U, obj_fcn 这几个变量里了 |
|
|
|
|
|
我做模糊控制的程序也有flag没有定义的情况!!
|
|
|
|
|
|
新建个M文件,把你这段复制进去保存,然后中间那段不是有example吗, 按那个例子试试
写这段
|
|
|
|
|
你正在撰写答案
如果你是对答案或其他答案精选点评或询问,请使用“评论”功能。
我用matlab的coder 封装了一个c语言的dll, 但是在用labview调用时,会出现识别不到库的问题,有大神遇到过吗
2645 浏览 0 评论
5229 浏览 0 评论
在matlab中如何计算含有第一类修正的贝塞尔函数的积分算不出的问题?
9025 浏览 0 评论
怎么利用matlab得到95%,80%和70%的置信区间,并生成不同区间下的功率误差贝塔分布?
10466 浏览 0 评论
请问simulink的s-function模块如何添加多输入输出接口
14632 浏览 2 评论
/9
小黑屋| 手机版| Archiver| 电子发烧友 ( 湘ICP备2023018690号 )
GMT+8, 2025-12-2 10:32 , Processed in 0.772053 second(s), Total 57, Slave 47 queries .
Powered by 电子发烧友网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
电子发烧友观察
版权所有 © 湖南华秋数字科技有限公司
电子发烧友 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191

淘帖
1754